Tianshou/test/offline/test_discrete_bcq.py
Jiayi Weng 2a9c9289e5
rename save_fn to save_best_fn to avoid ambiguity (#575)
This PR also introduces `tianshou.utils.deprecation` for a unified deprecation wrapper.
2022-03-22 04:29:27 +08:00

173 lines
6.2 KiB
Python

import argparse
import os
import pickle
import pprint
import gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import DiscreteBCQPolicy
from tianshou.trainer import offline_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import ActorCritic, Net
from tianshou.utils.net.discrete import Actor
if __name__ == "__main__":
from gather_cartpole_data import expert_file_name, gather_data
else: # pytest
from test.offline.gather_cartpole_data import expert_file_name, gather_data
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v0")
parser.add_argument('--reward-threshold', type=float, default=None)
parser.add_argument("--seed", type=int, default=1626)
parser.add_argument("--eps-test", type=float, default=0.001)
parser.add_argument("--lr", type=float, default=3e-4)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--target-update-freq", type=int, default=320)
parser.add_argument("--unlikely-action-threshold", type=float, default=0.6)
parser.add_argument("--imitation-logits-penalty", type=float, default=0.01)
parser.add_argument("--epoch", type=int, default=5)
parser.add_argument("--update-per-epoch", type=int, default=2000)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.)
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--resume", action="store_true")
parser.add_argument("--save-interval", type=int, default=4)
args = parser.parse_known_args()[0]
return args
def test_discrete_bcq(args=get_args()):
# envs
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v0": 190}
args.reward_threshold = default_reward_threshold.get(
args.task, env.spec.reward_threshold
)
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, args.hidden_sizes[0], device=args.device)
policy_net = Actor(
net, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device
).to(args.device)
imitation_net = Actor(
net, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device
).to(args.device)
actor_critic = ActorCritic(policy_net, imitation_net)
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
policy = DiscreteBCQPolicy(
policy_net,
imitation_net,
optim,
args.gamma,
args.n_step,
args.target_update_freq,
args.eps_test,
args.unlikely_action_threshold,
args.imitation_logits_penalty,
)
# buffer
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
if args.load_buffer_name.endswith(".hdf5"):
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
else:
buffer = pickle.load(open(args.load_buffer_name, "rb"))
else:
buffer = gather_data()
# collector
test_collector = Collector(policy, test_envs, exploration_noise=True)
log_path = os.path.join(args.logdir, args.task, 'discrete_bcq')
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer, save_interval=args.save_interval)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= args.reward_threshold
def save_checkpoint_fn(epoch, env_step, gradient_step):
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
torch.save(
{
'model': policy.state_dict(),
'optim': optim.state_dict(),
}, os.path.join(log_path, 'checkpoint.pth')
)
if args.resume:
# load from existing checkpoint
print(f"Loading agent under {log_path}")
ckpt_path = os.path.join(log_path, 'checkpoint.pth')
if os.path.exists(ckpt_path):
checkpoint = torch.load(ckpt_path, map_location=args.device)
policy.load_state_dict(checkpoint['model'])
optim.load_state_dict(checkpoint['optim'])
print("Successfully restore policy and optim.")
else:
print("Fail to restore policy and optim.")
result = offline_trainer(
policy,
buffer,
test_collector,
args.epoch,
args.update_per_epoch,
args.test_num,
args.batch_size,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
resume_from_log=args.resume,
save_checkpoint_fn=save_checkpoint_fn
)
assert stop_fn(result['best_reward'])
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
policy.set_eps(args.eps_test)
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
def test_discrete_bcq_resume(args=get_args()):
args.resume = True
test_discrete_bcq(args)
if __name__ == "__main__":
test_discrete_bcq(get_args())