A test is not a script and should not be used as such Also marked pistonball test as skipped since it doesn't actually test anything
197 lines
7.7 KiB
Python
197 lines
7.7 KiB
Python
import argparse
|
|
import os
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from torch.distributions import Distribution, Independent, Normal
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import PPOPolicy
|
|
from tianshou.policy.base import BasePolicy
|
|
from tianshou.policy.modelfree.ppo import PPOTrainingStats
|
|
from tianshou.trainer import OnpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import ActorCritic, Net
|
|
from tianshou.utils.net.continuous import ActorProb, Critic
|
|
from tianshou.utils.space_info import SpaceInfo
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="Pendulum-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=1)
|
|
parser.add_argument("--buffer-size", type=int, default=20000)
|
|
parser.add_argument("--lr", type=float, default=1e-3)
|
|
parser.add_argument("--gamma", type=float, default=0.95)
|
|
parser.add_argument("--epoch", type=int, default=5)
|
|
parser.add_argument("--step-per-epoch", type=int, default=150000)
|
|
parser.add_argument("--episode-per-collect", type=int, default=16)
|
|
parser.add_argument("--repeat-per-collect", type=int, default=2)
|
|
parser.add_argument("--batch-size", type=int, default=128)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
|
|
parser.add_argument("--training-num", type=int, default=16)
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
# ppo special
|
|
parser.add_argument("--vf-coef", type=float, default=0.25)
|
|
parser.add_argument("--ent-coef", type=float, default=0.0)
|
|
parser.add_argument("--eps-clip", type=float, default=0.2)
|
|
parser.add_argument("--max-grad-norm", type=float, default=0.5)
|
|
parser.add_argument("--gae-lambda", type=float, default=0.95)
|
|
parser.add_argument("--rew-norm", type=int, default=1)
|
|
parser.add_argument("--dual-clip", type=float, default=None)
|
|
parser.add_argument("--value-clip", type=int, default=1)
|
|
parser.add_argument("--norm-adv", type=int, default=1)
|
|
parser.add_argument("--recompute-adv", type=int, default=0)
|
|
parser.add_argument("--resume", action="store_true")
|
|
parser.add_argument("--save-interval", type=int, default=4)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_ppo(args: argparse.Namespace = get_args()) -> None:
|
|
env = gym.make(args.task)
|
|
|
|
space_info = SpaceInfo.from_env(env)
|
|
args.state_shape = space_info.observation_info.obs_shape
|
|
args.action_shape = space_info.action_info.action_shape
|
|
args.max_action = space_info.action_info.max_action
|
|
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
|
|
args.reward_threshold = default_reward_threshold.get(
|
|
args.task,
|
|
env.spec.reward_threshold if env.spec else None,
|
|
)
|
|
# you can also use tianshou.env.SubprocVectorEnv
|
|
# train_envs = gym.make(args.task)
|
|
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# model
|
|
net = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
actor = ActorProb(net, args.action_shape, unbounded=True, device=args.device).to(args.device)
|
|
critic = Critic(
|
|
Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device),
|
|
device=args.device,
|
|
).to(args.device)
|
|
actor_critic = ActorCritic(actor, critic)
|
|
# orthogonal initialization
|
|
for m in actor_critic.modules():
|
|
if isinstance(m, torch.nn.Linear):
|
|
torch.nn.init.orthogonal_(m.weight)
|
|
torch.nn.init.zeros_(m.bias)
|
|
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
|
|
|
|
# replace DiagGuassian with Independent(Normal) which is equivalent
|
|
# pass *logits to be consistent with policy.forward
|
|
def dist(loc_scale: tuple[torch.Tensor, torch.Tensor]) -> Distribution:
|
|
loc, scale = loc_scale
|
|
return Independent(Normal(loc, scale), 1)
|
|
|
|
policy: PPOPolicy[PPOTrainingStats] = PPOPolicy(
|
|
actor=actor,
|
|
critic=critic,
|
|
optim=optim,
|
|
dist_fn=dist,
|
|
discount_factor=args.gamma,
|
|
max_grad_norm=args.max_grad_norm,
|
|
eps_clip=args.eps_clip,
|
|
vf_coef=args.vf_coef,
|
|
ent_coef=args.ent_coef,
|
|
reward_normalization=args.rew_norm,
|
|
advantage_normalization=args.norm_adv,
|
|
recompute_advantage=args.recompute_adv,
|
|
dual_clip=args.dual_clip,
|
|
value_clip=args.value_clip,
|
|
gae_lambda=args.gae_lambda,
|
|
action_space=env.action_space,
|
|
)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
)
|
|
test_collector = Collector(policy, test_envs)
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, "ppo")
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer, save_interval=args.save_interval)
|
|
|
|
def save_best_fn(policy: BasePolicy) -> None:
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
def save_checkpoint_fn(epoch: int, env_step: int, gradient_step: int) -> str:
|
|
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
|
|
ckpt_path = os.path.join(log_path, "checkpoint.pth")
|
|
# Example: saving by epoch num
|
|
# ckpt_path = os.path.join(log_path, f"checkpoint_{epoch}.pth")
|
|
torch.save(
|
|
{
|
|
"model": policy.state_dict(),
|
|
"optim": optim.state_dict(),
|
|
},
|
|
ckpt_path,
|
|
)
|
|
return ckpt_path
|
|
|
|
if args.resume:
|
|
# load from existing checkpoint
|
|
print(f"Loading agent under {log_path}")
|
|
ckpt_path = os.path.join(log_path, "checkpoint.pth")
|
|
if os.path.exists(ckpt_path):
|
|
checkpoint = torch.load(ckpt_path, map_location=args.device)
|
|
policy.load_state_dict(checkpoint["model"])
|
|
optim.load_state_dict(checkpoint["optim"])
|
|
print("Successfully restore policy and optim.")
|
|
else:
|
|
print("Fail to restore policy and optim.")
|
|
|
|
# trainer
|
|
trainer = OnpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
repeat_per_collect=args.repeat_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
episode_per_collect=args.episode_per_collect,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
resume_from_log=args.resume,
|
|
save_checkpoint_fn=save_checkpoint_fn,
|
|
)
|
|
|
|
for epoch_stat in trainer:
|
|
print(f"Epoch: {epoch_stat.epoch}")
|
|
print(epoch_stat)
|
|
# print(info)
|
|
|
|
assert stop_fn(epoch_stat.info_stat.best_reward)
|
|
|
|
|
|
def test_ppo_resume(args: argparse.Namespace = get_args()) -> None:
|
|
args.resume = True
|
|
test_ppo(args)
|