A test is not a script and should not be used as such Also marked pistonball test as skipped since it doesn't actually test anything
207 lines
7.9 KiB
Python
207 lines
7.9 KiB
Python
import argparse
|
|
import os
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import ImitationPolicy, SACPolicy
|
|
from tianshou.policy.base import BasePolicy
|
|
from tianshou.trainer import OffpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import Net
|
|
from tianshou.utils.net.continuous import Actor, ActorProb, Critic
|
|
from tianshou.utils.space_info import SpaceInfo
|
|
|
|
try:
|
|
import envpool
|
|
except ImportError:
|
|
envpool = None
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="Pendulum-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=1)
|
|
parser.add_argument("--buffer-size", type=int, default=20000)
|
|
parser.add_argument("--actor-lr", type=float, default=1e-3)
|
|
parser.add_argument("--critic-lr", type=float, default=1e-3)
|
|
parser.add_argument("--il-lr", type=float, default=1e-3)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
parser.add_argument("--tau", type=float, default=0.005)
|
|
parser.add_argument("--alpha", type=float, default=0.2)
|
|
parser.add_argument("--auto-alpha", type=int, default=1)
|
|
parser.add_argument("--alpha-lr", type=float, default=3e-4)
|
|
parser.add_argument("--epoch", type=int, default=10)
|
|
parser.add_argument("--step-per-epoch", type=int, default=24000)
|
|
parser.add_argument("--il-step-per-epoch", type=int, default=500)
|
|
parser.add_argument("--step-per-collect", type=int, default=10)
|
|
parser.add_argument("--update-per-step", type=float, default=0.1)
|
|
parser.add_argument("--batch-size", type=int, default=128)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128, 128])
|
|
parser.add_argument("--imitation-hidden-sizes", type=int, nargs="*", default=[128, 128])
|
|
parser.add_argument("--training-num", type=int, default=10)
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument("--n-step", type=int, default=3)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_sac_with_il(args: argparse.Namespace = get_args()) -> None:
|
|
# if you want to use python vector env, please refer to other test scripts
|
|
# train_envs = env = envpool.make_gymnasium(args.task, num_envs=args.training_num, seed=args.seed)
|
|
# test_envs = envpool.make_gymnasium(args.task, num_envs=args.test_num, seed=args.seed)
|
|
env = gym.make(args.task)
|
|
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
space_info = SpaceInfo.from_env(env)
|
|
args.state_shape = space_info.observation_info.obs_shape
|
|
args.action_shape = space_info.action_info.action_shape
|
|
args.max_action = space_info.action_info.max_action
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
|
|
args.reward_threshold = default_reward_threshold.get(
|
|
args.task,
|
|
env.spec.reward_threshold if env.spec else None,
|
|
)
|
|
# you can also use tianshou.env.SubprocVectorEnv
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed + args.training_num)
|
|
# model
|
|
net = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
actor = ActorProb(net, args.action_shape, device=args.device, unbounded=True).to(args.device)
|
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
|
net_c1 = Net(
|
|
state_shape=args.state_shape,
|
|
action_shape=args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
concat=True,
|
|
device=args.device,
|
|
)
|
|
critic1 = Critic(net_c1, device=args.device).to(args.device)
|
|
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
|
|
net_c2 = Net(
|
|
state_shape=args.state_shape,
|
|
action_shape=args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
concat=True,
|
|
device=args.device,
|
|
)
|
|
critic2 = Critic(net_c2, device=args.device).to(args.device)
|
|
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
|
|
|
|
action_dim = space_info.action_info.action_dim
|
|
if args.auto_alpha:
|
|
target_entropy = -action_dim
|
|
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
|
|
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
|
|
args.alpha = (target_entropy, log_alpha, alpha_optim)
|
|
|
|
policy: SACPolicy = SACPolicy(
|
|
actor=actor,
|
|
actor_optim=actor_optim,
|
|
critic=critic1,
|
|
critic_optim=critic1_optim,
|
|
critic2=critic2,
|
|
critic2_optim=critic2_optim,
|
|
tau=args.tau,
|
|
gamma=args.gamma,
|
|
alpha=args.alpha,
|
|
estimation_step=args.n_step,
|
|
action_space=env.action_space,
|
|
)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
exploration_noise=True,
|
|
)
|
|
test_collector = Collector(policy, test_envs)
|
|
# train_collector.collect(n_step=args.buffer_size)
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, "sac")
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy: BasePolicy) -> None:
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
# trainer
|
|
result = OffpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
update_per_step=args.update_per_step,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
assert stop_fn(result.best_reward)
|
|
|
|
# here we define an imitation collector with a trivial policy
|
|
if args.task.startswith("Pendulum"):
|
|
args.reward_threshold -= 50 # lower the goal
|
|
il_net = Net(
|
|
args.state_shape,
|
|
hidden_sizes=args.imitation_hidden_sizes,
|
|
device=args.device,
|
|
)
|
|
il_actor = Actor(
|
|
il_net,
|
|
args.action_shape,
|
|
max_action=args.max_action,
|
|
device=args.device,
|
|
).to(args.device)
|
|
optim = torch.optim.Adam(il_actor.parameters(), lr=args.il_lr)
|
|
il_policy: ImitationPolicy = ImitationPolicy(
|
|
actor=il_actor,
|
|
optim=optim,
|
|
action_space=env.action_space,
|
|
action_scaling=True,
|
|
action_bound_method="clip",
|
|
)
|
|
il_test_env = gym.make(args.task)
|
|
il_test_env.reset(seed=args.seed + args.training_num + args.test_num)
|
|
il_test_collector = Collector(
|
|
il_policy,
|
|
# envpool.make_gymnasium(args.task, num_envs=args.test_num, seed=args.seed),
|
|
il_test_env,
|
|
)
|
|
train_collector.reset()
|
|
result = OffpolicyTrainer(
|
|
policy=il_policy,
|
|
train_collector=train_collector,
|
|
test_collector=il_test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.il_step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
assert stop_fn(result.best_reward)
|