A test is not a script and should not be used as such Also marked pistonball test as skipped since it doesn't actually test anything
191 lines
7.1 KiB
Python
191 lines
7.1 KiB
Python
import argparse
|
|
import os
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from gymnasium.spaces import Box
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import ICMPolicy, PPOPolicy
|
|
from tianshou.policy.base import BasePolicy
|
|
from tianshou.policy.modelfree.ppo import PPOTrainingStats
|
|
from tianshou.trainer import OnpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import MLP, ActorCritic, Net
|
|
from tianshou.utils.net.discrete import Actor, Critic, IntrinsicCuriosityModule
|
|
from tianshou.utils.space_info import SpaceInfo
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="CartPole-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=1626)
|
|
parser.add_argument("--buffer-size", type=int, default=20000)
|
|
parser.add_argument("--lr", type=float, default=3e-4)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
parser.add_argument("--epoch", type=int, default=10)
|
|
parser.add_argument("--step-per-epoch", type=int, default=50000)
|
|
parser.add_argument("--step-per-collect", type=int, default=2000)
|
|
parser.add_argument("--repeat-per-collect", type=int, default=10)
|
|
parser.add_argument("--batch-size", type=int, default=64)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
|
|
parser.add_argument("--training-num", type=int, default=20)
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
# ppo special
|
|
parser.add_argument("--vf-coef", type=float, default=0.5)
|
|
parser.add_argument("--ent-coef", type=float, default=0.0)
|
|
parser.add_argument("--eps-clip", type=float, default=0.2)
|
|
parser.add_argument("--max-grad-norm", type=float, default=0.5)
|
|
parser.add_argument("--gae-lambda", type=float, default=0.95)
|
|
parser.add_argument("--rew-norm", type=int, default=0)
|
|
parser.add_argument("--norm-adv", type=int, default=0)
|
|
parser.add_argument("--recompute-adv", type=int, default=0)
|
|
parser.add_argument("--dual-clip", type=float, default=None)
|
|
parser.add_argument("--value-clip", type=int, default=0)
|
|
parser.add_argument(
|
|
"--lr-scale",
|
|
type=float,
|
|
default=1.0,
|
|
help="use intrinsic curiosity module with this lr scale",
|
|
)
|
|
parser.add_argument(
|
|
"--reward-scale",
|
|
type=float,
|
|
default=0.01,
|
|
help="scaling factor for intrinsic curiosity reward",
|
|
)
|
|
parser.add_argument(
|
|
"--forward-loss-weight",
|
|
type=float,
|
|
default=0.2,
|
|
help="weight for the forward model loss in ICM",
|
|
)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_ppo(args: argparse.Namespace = get_args()) -> None:
|
|
env = gym.make(args.task)
|
|
|
|
space_info = SpaceInfo.from_env(env)
|
|
args.state_shape = space_info.observation_info.obs_shape
|
|
args.action_shape = space_info.action_info.action_shape
|
|
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"CartPole-v1": 195}
|
|
args.reward_threshold = default_reward_threshold.get(
|
|
args.task,
|
|
env.spec.reward_threshold if env.spec else None,
|
|
)
|
|
# train_envs = gym.make(args.task)
|
|
# you can also use tianshou.env.SubprocVectorEnv
|
|
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# model
|
|
net = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
|
|
critic = Critic(net, device=args.device).to(args.device)
|
|
actor_critic = ActorCritic(actor, critic)
|
|
# orthogonal initialization
|
|
for m in actor_critic.modules():
|
|
if isinstance(m, torch.nn.Linear):
|
|
torch.nn.init.orthogonal_(m.weight)
|
|
torch.nn.init.zeros_(m.bias)
|
|
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
|
|
dist = torch.distributions.Categorical
|
|
policy: PPOPolicy[PPOTrainingStats] = PPOPolicy(
|
|
actor=actor,
|
|
critic=critic,
|
|
optim=optim,
|
|
dist_fn=dist,
|
|
action_scaling=isinstance(env.action_space, Box),
|
|
discount_factor=args.gamma,
|
|
max_grad_norm=args.max_grad_norm,
|
|
eps_clip=args.eps_clip,
|
|
vf_coef=args.vf_coef,
|
|
ent_coef=args.ent_coef,
|
|
gae_lambda=args.gae_lambda,
|
|
reward_normalization=args.rew_norm,
|
|
dual_clip=args.dual_clip,
|
|
value_clip=args.value_clip,
|
|
action_space=env.action_space,
|
|
deterministic_eval=True,
|
|
advantage_normalization=args.norm_adv,
|
|
recompute_advantage=args.recompute_adv,
|
|
)
|
|
feature_dim = args.hidden_sizes[-1]
|
|
feature_net = MLP(
|
|
space_info.observation_info.obs_dim,
|
|
output_dim=feature_dim,
|
|
hidden_sizes=args.hidden_sizes[:-1],
|
|
device=args.device,
|
|
)
|
|
action_dim = space_info.action_info.action_dim
|
|
icm_net = IntrinsicCuriosityModule(
|
|
feature_net,
|
|
feature_dim,
|
|
action_dim,
|
|
hidden_sizes=args.hidden_sizes[-1:],
|
|
device=args.device,
|
|
).to(args.device)
|
|
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr)
|
|
policy = ICMPolicy(
|
|
policy=policy,
|
|
model=icm_net,
|
|
optim=icm_optim,
|
|
action_space=env.action_space,
|
|
lr_scale=args.lr_scale,
|
|
reward_scale=args.reward_scale,
|
|
forward_loss_weight=args.forward_loss_weight,
|
|
)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
)
|
|
test_collector = Collector(policy, test_envs)
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, "ppo_icm")
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy: BasePolicy) -> None:
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
# trainer
|
|
result = OnpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
repeat_per_collect=args.repeat_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
step_per_collect=args.step_per_collect,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
assert stop_fn(result.best_reward)
|