Tianshou/tianshou/data/buffer.py
Alexis DUBURCQ a951a32487
Enable partial stacking at Batch level (#100)
* Enable stacking of partially matching Batch instances.

* Fix list support for getitem.

* Fix Batch 'size' method.

* Update Batch documentation.
2020-06-27 09:06:40 +08:00

423 lines
16 KiB
Python

import numpy as np
from typing import Any, Tuple, Union, Optional
from .batch import Batch, _create_value
class ReplayBuffer:
""":class:`~tianshou.data.ReplayBuffer` stores data generated from
interaction between the policy and environment. It stores basically 7 types
of data, as mentioned in :class:`~tianshou.data.Batch`, based on
``numpy.ndarray``. Here is the usage:
::
>>> import numpy as np
>>> from tianshou.data import ReplayBuffer
>>> buf = ReplayBuffer(size=20)
>>> for i in range(3):
... buf.add(obs=i, act=i, rew=i, done=i, obs_next=i + 1, info={})
>>> len(buf)
3
>>> buf.obs
# since we set size = 20, len(buf.obs) == 20.
array([0., 1., 2., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.])
>>> buf2 = ReplayBuffer(size=10)
>>> for i in range(15):
... buf2.add(obs=i, act=i, rew=i, done=i, obs_next=i + 1, info={})
>>> len(buf2)
10
>>> buf2.obs
# since its size = 10, it only stores the last 10 steps' result.
array([10., 11., 12., 13., 14., 5., 6., 7., 8., 9.])
>>> # move buf2's result into buf (meanwhile keep it chronologically)
>>> buf.update(buf2)
array([ 0., 1., 2., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14.,
0., 0., 0., 0., 0., 0., 0.])
>>> # get a random sample from buffer
>>> # the batch_data is equal to buf[incide].
>>> batch_data, indice = buf.sample(batch_size=4)
>>> batch_data.obs == buf[indice].obs
array([ True, True, True, True])
:class:`~tianshou.data.ReplayBuffer` also supports frame_stack sampling
(typically for RNN usage, see issue#19), ignoring storing the next
observation (save memory in atari tasks), and multi-modal observation (see
issue#38):
::
>>> buf = ReplayBuffer(size=9, stack_num=4, ignore_obs_next=True)
>>> for i in range(16):
... done = i % 5 == 0
... buf.add(obs={'id': i}, act=i, rew=i, done=done,
... obs_next={'id': i + 1})
>>> print(buf) # you can see obs_next is not saved in buf
ReplayBuffer(
act: array([ 9., 10., 11., 12., 13., 14., 15., 7., 8.]),
done: array([0., 1., 0., 0., 0., 0., 1., 0., 0.]),
info: Batch(),
obs: Batch(
id: array([ 9., 10., 11., 12., 13., 14., 15., 7., 8.]),
),
policy: Batch(),
rew: array([ 9., 10., 11., 12., 13., 14., 15., 7., 8.]),
)
>>> index = np.arange(len(buf))
>>> print(buf.get(index, 'obs').id)
[[ 7. 7. 8. 9.]
[ 7. 8. 9. 10.]
[11. 11. 11. 11.]
[11. 11. 11. 12.]
[11. 11. 12. 13.]
[11. 12. 13. 14.]
[12. 13. 14. 15.]
[ 7. 7. 7. 7.]
[ 7. 7. 7. 8.]]
>>> # here is another way to get the stacked data
>>> # (stack only for obs and obs_next)
>>> abs(buf.get(index, 'obs')['id'] - buf[index].obs.id).sum().sum()
0.0
>>> # we can get obs_next through __getitem__, even if it doesn't exist
>>> print(buf[:].obs_next.id)
[[ 7. 8. 9. 10.]
[ 7. 8. 9. 10.]
[11. 11. 11. 12.]
[11. 11. 12. 13.]
[11. 12. 13. 14.]
[12. 13. 14. 15.]
[12. 13. 14. 15.]
[ 7. 7. 7. 8.]
[ 7. 7. 8. 9.]]
"""
def __init__(self, size: int, stack_num: Optional[int] = 0,
ignore_obs_next: bool = False, **kwargs) -> None:
super().__init__()
self._maxsize = size
self._stack = stack_num
self._save_s_ = not ignore_obs_next
self._index = 0
self._size = 0
self._meta = Batch()
self.reset()
def __len__(self) -> int:
"""Return len(self)."""
return self._size
def __repr__(self) -> str:
"""Return str(self)."""
return self.__class__.__name__ + self._meta.__repr__()[5:]
def __getattr__(self, key: str) -> Union['Batch', Any]:
"""Return self.key"""
return self._meta.__dict__[key]
def _add_to_buffer(self, name: str, inst: Any) -> None:
try:
value = self._meta.__dict__[name]
except KeyError:
self._meta.__dict__[name] = _create_value(inst, self._maxsize)
value = self._meta.__dict__[name]
if isinstance(inst, np.ndarray) and \
value.shape[1:] != inst.shape:
raise ValueError(
"Cannot add data to a buffer with different shape, key: "
f"{name}, expect shape: {value.shape[1:]}"
f", given shape: {inst.shape}.")
try:
value[self._index] = inst
except KeyError:
for key in set(inst.keys()).difference(value.__dict__.keys()):
value.__dict__[key] = _create_value(inst[key], self._maxsize)
value[self._index] = inst
def update(self, buffer: 'ReplayBuffer') -> None:
"""Move the data from the given buffer to self."""
i = begin = buffer._index % len(buffer)
while True:
self.add(**buffer[i])
i = (i + 1) % len(buffer)
if i == begin:
break
def add(self,
obs: Union[dict, Batch, np.ndarray],
act: Union[np.ndarray, float],
rew: float,
done: bool,
obs_next: Optional[Union[dict, Batch, np.ndarray]] = None,
info: dict = {},
policy: Optional[Union[dict, Batch]] = {},
**kwargs) -> None:
"""Add a batch of data into replay buffer."""
assert isinstance(info, (dict, Batch)), \
'You should return a dict in the last argument of env.step().'
self._add_to_buffer('obs', obs)
self._add_to_buffer('act', act)
self._add_to_buffer('rew', rew)
self._add_to_buffer('done', done)
if self._save_s_:
if obs_next is None:
obs_next = Batch()
self._add_to_buffer('obs_next', obs_next)
self._add_to_buffer('info', info)
self._add_to_buffer('policy', policy)
if self._maxsize > 0:
self._size = min(self._size + 1, self._maxsize)
self._index = (self._index + 1) % self._maxsize
else:
self._size = self._index = self._index + 1
def reset(self) -> None:
"""Clear all the data in replay buffer."""
self._index = 0
self._size = 0
def sample(self, batch_size: int) -> Tuple[Batch, np.ndarray]:
"""Get a random sample from buffer with size equal to batch_size. \
Return all the data in the buffer if batch_size is ``0``.
:return: Sample data and its corresponding index inside the buffer.
"""
if batch_size > 0:
indice = np.random.choice(self._size, batch_size)
else:
indice = np.concatenate([
np.arange(self._index, self._size),
np.arange(0, self._index),
])
return self[indice], indice
def get(self, indice: Union[slice, int, np.integer, np.ndarray], key: str,
stack_num: Optional[int] = None) -> Union[Batch, np.ndarray]:
"""Return the stacked result, e.g. [s_{t-3}, s_{t-2}, s_{t-1}, s_t],
where s is self.key, t is indice. The stack_num (here equals to 4) is
given from buffer initialization procedure.
"""
if stack_num is None:
stack_num = self._stack
if isinstance(indice, slice):
indice = np.arange(
0 if indice.start is None
else self._size - indice.start if indice.start < 0
else indice.start,
self._size if indice.stop is None
else self._size - indice.stop if indice.stop < 0
else indice.stop,
1 if indice.step is None else indice.step)
else:
indice = np.array(indice, copy=True)
# set last frame done to True
last_index = (self._index - 1 + self._size) % self._size
last_done, self.done[last_index] = self.done[last_index], True
if key == 'obs_next' and (not self._save_s_ or self.obs_next is None):
indice += 1 - self.done[indice].astype(np.int)
indice[indice == self._size] = 0
key = 'obs'
val = self._meta.__dict__[key]
try:
if stack_num > 0:
stack = []
for _ in range(stack_num):
stack = [val[indice]] + stack
pre_indice = np.asarray(indice - 1)
pre_indice[pre_indice == -1] = self._size - 1
indice = np.asarray(
pre_indice + self.done[pre_indice].astype(np.int))
indice[indice == self._size] = 0
if isinstance(val, Batch):
stack = Batch.stack(stack, axis=indice.ndim)
else:
stack = np.stack(stack, axis=indice.ndim)
else:
stack = val[indice]
except TypeError:
stack = Batch()
self.done[last_index] = last_done
return stack
def __getitem__(self, index: Union[
slice, int, np.integer, np.ndarray]) -> Batch:
"""Return a data batch: self[index]. If stack_num is set to be > 0,
return the stacked obs and obs_next with shape [batch, len, ...].
"""
return Batch(
obs=self.get(index, 'obs'),
act=self.act[index],
# act_=self.get(index, 'act'), # stacked action, for RNN
rew=self.rew[index],
done=self.done[index],
obs_next=self.get(index, 'obs_next'),
info=self.get(index, 'info', stack_num=0),
policy=self.get(index, 'policy')
)
class ListReplayBuffer(ReplayBuffer):
"""The function of :class:`~tianshou.data.ListReplayBuffer` is almost the
same as :class:`~tianshou.data.ReplayBuffer`. The only difference is that
:class:`~tianshou.data.ListReplayBuffer` is based on ``list``.
.. seealso::
Please refer to :class:`~tianshou.data.ReplayBuffer` for more
detailed explanation.
"""
def __init__(self, **kwargs) -> None:
super().__init__(size=0, ignore_obs_next=False, **kwargs)
def _add_to_buffer(
self, name: str,
inst: Union[dict, Batch, np.ndarray, float, int, bool]) -> None:
if inst is None:
return
if self._meta.__dict__.get(name, None) is None:
self._meta.__dict__[name] = []
self._meta.__dict__[name].append(inst)
def reset(self) -> None:
self._index = self._size = 0
for k in list(self._meta.__dict__.keys()):
if isinstance(self._meta.__dict__[k], list):
self._meta.__dict__[k] = []
class PrioritizedReplayBuffer(ReplayBuffer):
"""Prioritized replay buffer implementation.
:param float alpha: the prioritization exponent.
:param float beta: the importance sample soft coefficient.
:param str mode: defaults to ``weight``.
:param bool replace: whether to sample with replacement
.. seealso::
Please refer to :class:`~tianshou.data.ReplayBuffer` for more
detailed explanation.
"""
def __init__(self, size: int, alpha: float, beta: float,
mode: str = 'weight',
replace: bool = False, **kwargs) -> None:
if mode != 'weight':
raise NotImplementedError
super().__init__(size, **kwargs)
self._alpha = alpha
self._beta = beta
self._weight_sum = 0.0
self._amortization_freq = 50
self._amortization_counter = 0
self._replace = replace
self._meta.__dict__['weight'] = np.zeros(size, dtype=np.float64)
def add(self,
obs: Union[dict, np.ndarray],
act: Union[np.ndarray, float],
rew: float,
done: bool,
obs_next: Optional[Union[dict, np.ndarray]] = None,
info: dict = {},
policy: Optional[Union[dict, Batch]] = {},
weight: float = 1.0,
**kwargs) -> None:
"""Add a batch of data into replay buffer."""
# we have to sacrifice some convenience for speed
self._weight_sum += np.abs(weight) ** self._alpha - \
self._meta.__dict__['weight'][self._index]
self._add_to_buffer('weight', np.abs(weight) ** self._alpha)
super().add(obs, act, rew, done, obs_next, info, policy)
self._check_weight_sum()
@property
def replace(self):
return self._replace
@replace.setter
def replace(self, v: bool):
self._replace = v
def sample(self, batch_size: int,
importance_sample: bool = True
) -> Tuple[Batch, np.ndarray]:
"""Get a random sample from buffer with priority probability. \
Return all the data in the buffer if batch_size is ``0``.
:return: Sample data and its corresponding index inside the buffer.
"""
if batch_size > 0 and batch_size <= self._size:
# Multiple sampling of the same sample
# will cause weight update conflict
indice = np.random.choice(
self._size, batch_size,
p=(self.weight / self.weight.sum())[:self._size],
replace=self._replace)
# self._weight_sum is not work for the accuracy issue
# p=(self.weight/self._weight_sum)[:self._size], replace=False)
elif batch_size == 0:
indice = np.concatenate([
np.arange(self._index, self._size),
np.arange(0, self._index),
])
else:
# if batch_size larger than len(self),
# it will lead to a bug in update weight
raise ValueError(
"batch_size should be less than len(self), \
or set replace=False")
batch = self[indice]
if importance_sample:
impt_weight = Batch(
impt_weight=1 / np.power(
self._size * (batch.weight / self._weight_sum),
self._beta))
batch.cat_(impt_weight)
self._check_weight_sum()
return batch, indice
def reset(self) -> None:
self._amortization_counter = 0
super().reset()
def update_weight(self, indice: Union[slice, np.ndarray],
new_weight: np.ndarray) -> None:
"""Update priority weight by indice in this buffer.
:param np.ndarray indice: indice you want to update weight
:param np.ndarray new_weight: new priority weight you wangt to update
"""
if self._replace:
if isinstance(indice, slice):
# convert slice to ndarray
indice = np.arange(indice.stop)[indice]
# remove the same values in indice
indice, unique_indice = np.unique(
indice, return_index=True)
new_weight = new_weight[unique_indice]
self._weight_sum += np.power(np.abs(new_weight), self._alpha).sum() \
- self.weight[indice].sum()
self.weight[indice] = np.power(np.abs(new_weight), self._alpha)
def __getitem__(self, index: Union[slice, np.ndarray]) -> Batch:
return Batch(
obs=self.get(index, 'obs'),
act=self.act[index],
# act_=self.get(index, 'act'), # stacked action, for RNN
rew=self.rew[index],
done=self.done[index],
obs_next=self.get(index, 'obs_next'),
info=self.get(index, 'info'),
weight=self.weight[index],
policy=self.get(index, 'policy'),
)
def _check_weight_sum(self) -> None:
# keep an accurate _weight_sum
self._amortization_counter += 1
if self._amortization_counter % self._amortization_freq == 0:
self._weight_sum = np.sum(self.weight)
self._amortization_counter = 0