youkaichao a9f9940d17
code refactor for venv (#179)
- Refacor code to remove duplicate code

- Enable async simulation for all vector envs

- Remove `collector.close` and rename `VectorEnv` to `DummyVectorEnv`

The abstraction of vector env changed.

Prior to this pr, each vector env is almost independent.

After this pr, each env is wrapped into a worker, and vector envs differ with their worker type. In fact, users can just use `BaseVectorEnv` with different workers, I keep `SubprocVectorEnv`, `ShmemVectorEnv` for backward compatibility.

Co-authored-by: n+e <463003665@qq.com>
Co-authored-by: magicly <magicly007@gmail.com>
2020-08-19 15:00:24 +08:00

42 lines
1.2 KiB
Python

import gym
import numpy as np
from typing import List, Callable, Optional, Any
from tianshou.env.worker import EnvWorker
class DummyEnvWorker(EnvWorker):
"""Dummy worker used in sequential vector environments."""
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
super().__init__(env_fn)
self.env = env_fn()
def __getattr__(self, key: str):
if hasattr(self.env, key):
return getattr(self.env, key)
return None
def reset(self) -> Any:
return self.env.reset()
@staticmethod
def wait(workers: List['DummyEnvWorker'],
wait_num: int,
timeout: Optional[float] = None) -> List['DummyEnvWorker']:
# SequentialEnvWorker objects are always ready
return workers
def send_action(self, action: np.ndarray) -> None:
self.result = self.env.step(action)
def seed(self, seed: Optional[int] = None) -> List[int]:
return self.env.seed(seed) if hasattr(self.env, 'seed') else None
def render(self, **kwargs) -> Any:
return self.env.render(**kwargs) \
if hasattr(self.env, 'render') else None
def close_env(self) -> None:
self.env.close()