172 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			172 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import os
 | |
| import pprint
 | |
| 
 | |
| import gym
 | |
| import numpy as np
 | |
| import torch
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from tianshou.data import Collector, PrioritizedVectorReplayBuffer, VectorReplayBuffer
 | |
| from tianshou.env import DummyVectorEnv
 | |
| from tianshou.policy import DQNPolicy
 | |
| from tianshou.trainer import offpolicy_trainer
 | |
| from tianshou.utils import TensorboardLogger
 | |
| from tianshou.utils.net.common import Net
 | |
| 
 | |
| 
 | |
| def get_args():
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument('--task', type=str, default='CartPole-v0')
 | |
|     parser.add_argument('--reward-threshold', type=float, default=None)
 | |
|     parser.add_argument('--seed', type=int, default=1626)
 | |
|     parser.add_argument('--eps-test', type=float, default=0.05)
 | |
|     parser.add_argument('--eps-train', type=float, default=0.1)
 | |
|     parser.add_argument('--buffer-size', type=int, default=20000)
 | |
|     parser.add_argument('--lr', type=float, default=1e-3)
 | |
|     parser.add_argument('--gamma', type=float, default=0.9)
 | |
|     parser.add_argument('--n-step', type=int, default=3)
 | |
|     parser.add_argument('--target-update-freq', type=int, default=320)
 | |
|     parser.add_argument('--epoch', type=int, default=20)
 | |
|     parser.add_argument('--step-per-epoch', type=int, default=10000)
 | |
|     parser.add_argument('--step-per-collect', type=int, default=10)
 | |
|     parser.add_argument('--update-per-step', type=float, default=0.1)
 | |
|     parser.add_argument('--batch-size', type=int, default=64)
 | |
|     parser.add_argument(
 | |
|         '--hidden-sizes', type=int, nargs='*', default=[128, 128, 128, 128]
 | |
|     )
 | |
|     parser.add_argument('--training-num', type=int, default=10)
 | |
|     parser.add_argument('--test-num', type=int, default=100)
 | |
|     parser.add_argument('--logdir', type=str, default='log')
 | |
|     parser.add_argument('--render', type=float, default=0.)
 | |
|     parser.add_argument('--prioritized-replay', action="store_true", default=False)
 | |
|     parser.add_argument('--alpha', type=float, default=0.6)
 | |
|     parser.add_argument('--beta', type=float, default=0.4)
 | |
|     parser.add_argument(
 | |
|         '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
 | |
|     )
 | |
|     args = parser.parse_known_args()[0]
 | |
|     return args
 | |
| 
 | |
| 
 | |
| def test_dqn(args=get_args()):
 | |
|     env = gym.make(args.task)
 | |
|     args.state_shape = env.observation_space.shape or env.observation_space.n
 | |
|     args.action_shape = env.action_space.shape or env.action_space.n
 | |
|     if args.reward_threshold is None:
 | |
|         default_reward_threshold = {"CartPole-v0": 195}
 | |
|         args.reward_threshold = default_reward_threshold.get(
 | |
|             args.task, env.spec.reward_threshold
 | |
|         )
 | |
|     # train_envs = gym.make(args.task)
 | |
|     # you can also use tianshou.env.SubprocVectorEnv
 | |
|     train_envs = DummyVectorEnv(
 | |
|         [lambda: gym.make(args.task) for _ in range(args.training_num)]
 | |
|     )
 | |
|     # test_envs = gym.make(args.task)
 | |
|     test_envs = DummyVectorEnv(
 | |
|         [lambda: gym.make(args.task) for _ in range(args.test_num)]
 | |
|     )
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     train_envs.seed(args.seed)
 | |
|     test_envs.seed(args.seed)
 | |
|     # Q_param = V_param = {"hidden_sizes": [128]}
 | |
|     # model
 | |
|     net = Net(
 | |
|         args.state_shape,
 | |
|         args.action_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         device=args.device,
 | |
|         # dueling=(Q_param, V_param),
 | |
|     ).to(args.device)
 | |
|     optim = torch.optim.Adam(net.parameters(), lr=args.lr)
 | |
|     policy = DQNPolicy(
 | |
|         net,
 | |
|         optim,
 | |
|         args.gamma,
 | |
|         args.n_step,
 | |
|         target_update_freq=args.target_update_freq,
 | |
|     )
 | |
|     # buffer
 | |
|     if args.prioritized_replay:
 | |
|         buf = PrioritizedVectorReplayBuffer(
 | |
|             args.buffer_size,
 | |
|             buffer_num=len(train_envs),
 | |
|             alpha=args.alpha,
 | |
|             beta=args.beta,
 | |
|         )
 | |
|     else:
 | |
|         buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs))
 | |
|     # collector
 | |
|     train_collector = Collector(policy, train_envs, buf, exploration_noise=True)
 | |
|     test_collector = Collector(policy, test_envs, exploration_noise=True)
 | |
|     # policy.set_eps(1)
 | |
|     train_collector.collect(n_step=args.batch_size * args.training_num)
 | |
|     # log
 | |
|     log_path = os.path.join(args.logdir, args.task, 'dqn')
 | |
|     writer = SummaryWriter(log_path)
 | |
|     logger = TensorboardLogger(writer)
 | |
| 
 | |
|     def save_best_fn(policy):
 | |
|         torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
 | |
| 
 | |
|     def stop_fn(mean_rewards):
 | |
|         return mean_rewards >= args.reward_threshold
 | |
| 
 | |
|     def train_fn(epoch, env_step):
 | |
|         # eps annnealing, just a demo
 | |
|         if env_step <= 10000:
 | |
|             policy.set_eps(args.eps_train)
 | |
|         elif env_step <= 50000:
 | |
|             eps = args.eps_train - (env_step - 10000) / \
 | |
|                 40000 * (0.9 * args.eps_train)
 | |
|             policy.set_eps(eps)
 | |
|         else:
 | |
|             policy.set_eps(0.1 * args.eps_train)
 | |
| 
 | |
|     def test_fn(epoch, env_step):
 | |
|         policy.set_eps(args.eps_test)
 | |
| 
 | |
|     # trainer
 | |
|     result = offpolicy_trainer(
 | |
|         policy,
 | |
|         train_collector,
 | |
|         test_collector,
 | |
|         args.epoch,
 | |
|         args.step_per_epoch,
 | |
|         args.step_per_collect,
 | |
|         args.test_num,
 | |
|         args.batch_size,
 | |
|         update_per_step=args.update_per_step,
 | |
|         train_fn=train_fn,
 | |
|         test_fn=test_fn,
 | |
|         stop_fn=stop_fn,
 | |
|         save_best_fn=save_best_fn,
 | |
|         logger=logger,
 | |
|     )
 | |
|     assert stop_fn(result['best_reward'])
 | |
| 
 | |
|     if __name__ == '__main__':
 | |
|         pprint.pprint(result)
 | |
|         # Let's watch its performance!
 | |
|         env = gym.make(args.task)
 | |
|         policy.eval()
 | |
|         policy.set_eps(args.eps_test)
 | |
|         collector = Collector(policy, env)
 | |
|         result = collector.collect(n_episode=1, render=args.render)
 | |
|         rews, lens = result["rews"], result["lens"]
 | |
|         print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
 | |
| 
 | |
| 
 | |
| def test_pdqn(args=get_args()):
 | |
|     args.prioritized_replay = True
 | |
|     args.gamma = .95
 | |
|     args.seed = 1
 | |
|     test_dqn(args)
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     test_dqn(get_args())
 |