- Add Atari (discrete) SAC examples; - Fix a bug in Discrete SAC evaluation; default to deterministic mode.
		
			
				
	
	
		
			154 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			154 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import os
 | |
| import pprint
 | |
| 
 | |
| import gym
 | |
| import numpy as np
 | |
| import torch
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from tianshou.data import Collector, VectorReplayBuffer
 | |
| from tianshou.env import DummyVectorEnv
 | |
| from tianshou.policy import DiscreteSACPolicy
 | |
| from tianshou.trainer import offpolicy_trainer
 | |
| from tianshou.utils import TensorboardLogger
 | |
| from tianshou.utils.net.common import Net
 | |
| from tianshou.utils.net.discrete import Actor, Critic
 | |
| 
 | |
| 
 | |
| def get_args():
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument('--task', type=str, default='CartPole-v0')
 | |
|     parser.add_argument('--reward-threshold', type=float, default=None)
 | |
|     parser.add_argument('--seed', type=int, default=0)
 | |
|     parser.add_argument('--buffer-size', type=int, default=20000)
 | |
|     parser.add_argument('--actor-lr', type=float, default=1e-4)
 | |
|     parser.add_argument('--critic-lr', type=float, default=1e-3)
 | |
|     parser.add_argument('--alpha-lr', type=float, default=3e-4)
 | |
|     parser.add_argument('--gamma', type=float, default=0.95)
 | |
|     parser.add_argument('--tau', type=float, default=0.005)
 | |
|     parser.add_argument('--alpha', type=float, default=0.05)
 | |
|     parser.add_argument('--auto-alpha', action="store_true", default=False)
 | |
|     parser.add_argument('--epoch', type=int, default=5)
 | |
|     parser.add_argument('--step-per-epoch', type=int, default=10000)
 | |
|     parser.add_argument('--step-per-collect', type=int, default=10)
 | |
|     parser.add_argument('--update-per-step', type=float, default=0.1)
 | |
|     parser.add_argument('--batch-size', type=int, default=64)
 | |
|     parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
 | |
|     parser.add_argument('--training-num', type=int, default=10)
 | |
|     parser.add_argument('--test-num', type=int, default=100)
 | |
|     parser.add_argument('--logdir', type=str, default='log')
 | |
|     parser.add_argument('--render', type=float, default=0.0)
 | |
|     parser.add_argument('--rew-norm', action="store_true", default=False)
 | |
|     parser.add_argument('--n-step', type=int, default=3)
 | |
|     parser.add_argument(
 | |
|         '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
 | |
|     )
 | |
|     args = parser.parse_known_args()[0]
 | |
|     return args
 | |
| 
 | |
| 
 | |
| def test_discrete_sac(args=get_args()):
 | |
|     env = gym.make(args.task)
 | |
|     args.state_shape = env.observation_space.shape or env.observation_space.n
 | |
|     args.action_shape = env.action_space.shape or env.action_space.n
 | |
|     if args.reward_threshold is None:
 | |
|         default_reward_threshold = {"CartPole-v0": 170}  # lower the goal
 | |
|         args.reward_threshold = default_reward_threshold.get(
 | |
|             args.task, env.spec.reward_threshold
 | |
|         )
 | |
| 
 | |
|     train_envs = DummyVectorEnv(
 | |
|         [lambda: gym.make(args.task) for _ in range(args.training_num)]
 | |
|     )
 | |
|     test_envs = DummyVectorEnv(
 | |
|         [lambda: gym.make(args.task) for _ in range(args.test_num)]
 | |
|     )
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     train_envs.seed(args.seed)
 | |
|     test_envs.seed(args.seed)
 | |
|     # model
 | |
|     net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
 | |
|     actor = Actor(net, args.action_shape, softmax_output=False,
 | |
|                   device=args.device).to(args.device)
 | |
|     actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
 | |
|     net_c1 = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
 | |
|     critic1 = Critic(net_c1, last_size=args.action_shape,
 | |
|                      device=args.device).to(args.device)
 | |
|     critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
 | |
|     net_c2 = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
 | |
|     critic2 = Critic(net_c2, last_size=args.action_shape,
 | |
|                      device=args.device).to(args.device)
 | |
|     critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
 | |
| 
 | |
|     # better not to use auto alpha in CartPole
 | |
|     if args.auto_alpha:
 | |
|         target_entropy = 0.98 * np.log(np.prod(args.action_shape))
 | |
|         log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
 | |
|         alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
 | |
|         args.alpha = (target_entropy, log_alpha, alpha_optim)
 | |
| 
 | |
|     policy = DiscreteSACPolicy(
 | |
|         actor,
 | |
|         actor_optim,
 | |
|         critic1,
 | |
|         critic1_optim,
 | |
|         critic2,
 | |
|         critic2_optim,
 | |
|         args.tau,
 | |
|         args.gamma,
 | |
|         args.alpha,
 | |
|         estimation_step=args.n_step,
 | |
|         reward_normalization=args.rew_norm
 | |
|     )
 | |
|     # collector
 | |
|     train_collector = Collector(
 | |
|         policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs))
 | |
|     )
 | |
|     test_collector = Collector(policy, test_envs)
 | |
|     # train_collector.collect(n_step=args.buffer_size)
 | |
|     # log
 | |
|     log_path = os.path.join(args.logdir, args.task, 'discrete_sac')
 | |
|     writer = SummaryWriter(log_path)
 | |
|     logger = TensorboardLogger(writer)
 | |
| 
 | |
|     def save_best_fn(policy):
 | |
|         torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
 | |
| 
 | |
|     def stop_fn(mean_rewards):
 | |
|         return mean_rewards >= args.reward_threshold
 | |
| 
 | |
|     # trainer
 | |
|     result = offpolicy_trainer(
 | |
|         policy,
 | |
|         train_collector,
 | |
|         test_collector,
 | |
|         args.epoch,
 | |
|         args.step_per_epoch,
 | |
|         args.step_per_collect,
 | |
|         args.test_num,
 | |
|         args.batch_size,
 | |
|         stop_fn=stop_fn,
 | |
|         save_best_fn=save_best_fn,
 | |
|         logger=logger,
 | |
|         update_per_step=args.update_per_step,
 | |
|         test_in_train=False
 | |
|     )
 | |
|     assert stop_fn(result['best_reward'])
 | |
| 
 | |
|     if __name__ == '__main__':
 | |
|         pprint.pprint(result)
 | |
|         # Let's watch its performance!
 | |
|         env = gym.make(args.task)
 | |
|         policy.eval()
 | |
|         collector = Collector(policy, env)
 | |
|         result = collector.collect(n_episode=1, render=args.render)
 | |
|         rews, lens = result["rews"], result["lens"]
 | |
|         print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     test_discrete_sac()
 |