This PR adds a new method for getting actions from an env's observation and info. This is useful for standard inference and stands in contrast to batch-based methods that are currently used in training and evaluation. Without this, users have to do some kind of gymnastics to actually perform inference with a trained policy. I have also added a test for the new method. In future PRs, this method should be included in the examples (in the the "watch" section). To add this required improving multiple typing things and, importantly, _simplifying the signature of `forward` in many policies!_ This is a **breaking change**, but it will likely affect no users. The `input` parameter of forward was a rather hacky mechanism, I believe it is good that it's gone now. It will also help with #948 . The main functional change is the addition of `compute_action` to `BasePolicy`. Other minor changes: - improvements in typing - updated PR and Issue templates - Improved handling of `max_action_num` Closes #981
151 lines
5.3 KiB
Python
151 lines
5.3 KiB
Python
from typing import Any, Literal, Self
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from tianshou.data import Batch, ReplayBuffer, to_numpy, to_torch
|
|
from tianshou.data.batch import BatchProtocol
|
|
from tianshou.data.types import ActBatchProtocol, ObsBatchProtocol, RolloutBatchProtocol
|
|
from tianshou.policy import BasePolicy
|
|
from tianshou.policy.base import TLearningRateScheduler
|
|
from tianshou.utils.net.discrete import IntrinsicCuriosityModule
|
|
|
|
|
|
class ICMPolicy(BasePolicy):
|
|
"""Implementation of Intrinsic Curiosity Module. arXiv:1705.05363.
|
|
|
|
:param policy: a base policy to add ICM to.
|
|
:param model: the ICM model.
|
|
:param optim: a torch.optim for optimizing the model.
|
|
:param lr_scale: the scaling factor for ICM learning.
|
|
:param forward_loss_weight: the weight for forward model loss.
|
|
:param observation_space: Env's observation space.
|
|
:param action_scaling: if True, scale the action from [-1, 1] to the range
|
|
of action_space. Only used if the action_space is continuous.
|
|
:param action_bound_method: method to bound action to range [-1, 1].
|
|
Only used if the action_space is continuous.
|
|
:param lr_scheduler: if not None, will be called in `policy.update()`.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
policy: BasePolicy,
|
|
model: IntrinsicCuriosityModule,
|
|
optim: torch.optim.Optimizer,
|
|
lr_scale: float,
|
|
reward_scale: float,
|
|
forward_loss_weight: float,
|
|
action_space: gym.Space,
|
|
observation_space: gym.Space | None = None,
|
|
action_scaling: bool = False,
|
|
action_bound_method: Literal["clip", "tanh"] | None = "clip",
|
|
lr_scheduler: TLearningRateScheduler | None = None,
|
|
) -> None:
|
|
super().__init__(
|
|
action_space=action_space,
|
|
observation_space=observation_space,
|
|
action_scaling=action_scaling,
|
|
action_bound_method=action_bound_method,
|
|
lr_scheduler=lr_scheduler,
|
|
)
|
|
self.policy = policy
|
|
self.model = model
|
|
self.optim = optim
|
|
self.lr_scale = lr_scale
|
|
self.reward_scale = reward_scale
|
|
self.forward_loss_weight = forward_loss_weight
|
|
|
|
def train(self, mode: bool = True) -> Self:
|
|
"""Set the module in training mode."""
|
|
self.policy.train(mode)
|
|
self.training = mode
|
|
self.model.train(mode)
|
|
return self
|
|
|
|
def forward(
|
|
self,
|
|
batch: ObsBatchProtocol,
|
|
state: dict | BatchProtocol | np.ndarray | None = None,
|
|
**kwargs: Any,
|
|
) -> ActBatchProtocol:
|
|
"""Compute action over the given batch data by inner policy.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for
|
|
more detailed explanation.
|
|
"""
|
|
return self.policy.forward(batch, state, **kwargs)
|
|
|
|
def exploration_noise(
|
|
self,
|
|
act: np.ndarray | BatchProtocol,
|
|
batch: RolloutBatchProtocol,
|
|
) -> np.ndarray | BatchProtocol:
|
|
return self.policy.exploration_noise(act, batch)
|
|
|
|
def set_eps(self, eps: float) -> None:
|
|
"""Set the eps for epsilon-greedy exploration."""
|
|
if hasattr(self.policy, "set_eps"):
|
|
self.policy.set_eps(eps) # type: ignore
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def process_fn(
|
|
self,
|
|
batch: RolloutBatchProtocol,
|
|
buffer: ReplayBuffer,
|
|
indices: np.ndarray,
|
|
) -> RolloutBatchProtocol:
|
|
"""Pre-process the data from the provided replay buffer.
|
|
|
|
Used in :meth:`update`. Check out :ref:`process_fn` for more information.
|
|
"""
|
|
mse_loss, act_hat = self.model(batch.obs, batch.act, batch.obs_next)
|
|
batch.policy = Batch(orig_rew=batch.rew, act_hat=act_hat, mse_loss=mse_loss)
|
|
batch.rew += to_numpy(mse_loss * self.reward_scale)
|
|
return self.policy.process_fn(batch, buffer, indices)
|
|
|
|
def post_process_fn(
|
|
self,
|
|
batch: BatchProtocol,
|
|
buffer: ReplayBuffer,
|
|
indices: np.ndarray,
|
|
) -> None:
|
|
"""Post-process the data from the provided replay buffer.
|
|
|
|
Typical usage is to update the sampling weight in prioritized
|
|
experience replay. Used in :meth:`update`.
|
|
"""
|
|
self.policy.post_process_fn(batch, buffer, indices)
|
|
batch.rew = batch.policy.orig_rew # restore original reward
|
|
|
|
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> dict[str, float]:
|
|
res = self.policy.learn(batch, **kwargs)
|
|
self.optim.zero_grad()
|
|
act_hat = batch.policy.act_hat
|
|
act = to_torch(batch.act, dtype=torch.long, device=act_hat.device)
|
|
inverse_loss = F.cross_entropy(act_hat, act).mean()
|
|
forward_loss = batch.policy.mse_loss.mean()
|
|
loss = (
|
|
(1 - self.forward_loss_weight) * inverse_loss + self.forward_loss_weight * forward_loss
|
|
) * self.lr_scale
|
|
loss.backward()
|
|
self.optim.step()
|
|
res.update(
|
|
{
|
|
"loss/icm": loss.item(),
|
|
"loss/icm/forward": forward_loss.item(),
|
|
"loss/icm/inverse": inverse_loss.item(),
|
|
},
|
|
)
|
|
return res
|