Tianshou/tianshou/utils/net/continuous.py
Michael Panchenko 3a1bc18add
Method to compute actions from observations (#991)
This PR adds a new method for getting actions from an env's observation
and info. This is useful for standard inference and stands in contrast
to batch-based methods that are currently used in training and
evaluation. Without this, users have to do some kind of gymnastics to
actually perform inference with a trained policy. I have also added a
test for the new method.

In future PRs, this method should be included in the examples (in the
the "watch" section).

To add this required improving multiple typing things and, importantly,
_simplifying the signature of `forward` in many policies!_ This is a
**breaking change**, but it will likely affect no users. The `input`
parameter of forward was a rather hacky mechanism, I believe it is good
that it's gone now. It will also help with #948 .

The main functional change is the addition of `compute_action` to
`BasePolicy`.

Other minor changes:
- improvements in typing
- updated PR and Issue templates
- Improved handling of `max_action_num`

Closes #981
2023-11-16 17:27:53 +00:00

513 lines
17 KiB
Python

import warnings
from collections.abc import Sequence
from typing import Any, cast
import numpy as np
import torch
from torch import nn
from tianshou.utils.net.common import MLP, BaseActor, TActionShape, TLinearLayer
SIGMA_MIN = -20
SIGMA_MAX = 2
class Actor(BaseActor):
"""Simple actor network.
It will create an actor operated in continuous action space with structure of preprocess_net ---> action_shape.
:param preprocess_net: a self-defined preprocess_net which output a
flattened hidden state.
:param action_shape: a sequence of int for the shape of action.
:param hidden_sizes: a sequence of int for constructing the MLP after
preprocess_net. Default to empty sequence (where the MLP now contains
only a single linear layer).
:param max_action: the scale for the final action logits. Default to
1.
:param preprocess_net_output_dim: the output dimension of
preprocess_net.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
.. seealso::
Please refer to :class:`~tianshou.utils.net.common.Net` as an instance
of how preprocess_net is suggested to be defined.
"""
def __init__(
self,
preprocess_net: nn.Module,
action_shape: TActionShape,
hidden_sizes: Sequence[int] = (),
max_action: float = 1.0,
device: str | int | torch.device = "cpu",
preprocess_net_output_dim: int | None = None,
) -> None:
super().__init__()
self.device = device
self.preprocess = preprocess_net
self.output_dim = int(np.prod(action_shape))
input_dim = getattr(preprocess_net, "output_dim", preprocess_net_output_dim)
input_dim = cast(int, input_dim)
self.last = MLP(
input_dim,
self.output_dim,
hidden_sizes,
device=self.device,
)
self.max_action = max_action
def get_preprocess_net(self) -> nn.Module:
return self.preprocess
def get_output_dim(self) -> int:
return self.output_dim
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any = None,
info: dict[str, Any] | None = None,
) -> tuple[torch.Tensor, Any]:
"""Mapping: obs -> logits -> action."""
if info is None:
info = {}
logits, hidden = self.preprocess(obs, state)
logits = self.max_action * torch.tanh(self.last(logits))
return logits, hidden
class Critic(nn.Module):
"""Simple critic network.
It will create an actor operated in continuous action space with structure of preprocess_net ---> 1(q value).
:param preprocess_net: a self-defined preprocess_net which output a
flattened hidden state.
:param hidden_sizes: a sequence of int for constructing the MLP after
preprocess_net. Default to empty sequence (where the MLP now contains
only a single linear layer).
:param preprocess_net_output_dim: the output dimension of
preprocess_net.
:param linear_layer: use this module as linear layer. Default to nn.Linear.
:param flatten_input: whether to flatten input data for the last layer.
Default to True.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
.. seealso::
Please refer to :class:`~tianshou.utils.net.common.Net` as an instance
of how preprocess_net is suggested to be defined.
"""
def __init__(
self,
preprocess_net: nn.Module,
hidden_sizes: Sequence[int] = (),
device: str | int | torch.device = "cpu",
preprocess_net_output_dim: int | None = None,
linear_layer: TLinearLayer = nn.Linear,
flatten_input: bool = True,
) -> None:
super().__init__()
self.device = device
self.preprocess = preprocess_net
self.output_dim = 1
input_dim = getattr(preprocess_net, "output_dim", preprocess_net_output_dim)
self.last = MLP(
input_dim, # type: ignore
1,
hidden_sizes,
device=self.device,
linear_layer=linear_layer,
flatten_input=flatten_input,
)
def forward(
self,
obs: np.ndarray | torch.Tensor,
act: np.ndarray | torch.Tensor | None = None,
info: dict[str, Any] | None = None,
) -> torch.Tensor:
"""Mapping: (s, a) -> logits -> Q(s, a)."""
if info is None:
info = {}
obs = torch.as_tensor(
obs,
device=self.device,
dtype=torch.float32,
).flatten(1)
if act is not None:
act = torch.as_tensor(
act,
device=self.device,
dtype=torch.float32,
).flatten(1)
obs = torch.cat([obs, act], dim=1)
logits, hidden = self.preprocess(obs)
return self.last(logits)
class ActorProb(BaseActor):
"""Simple actor network (output with a Gauss distribution).
:param preprocess_net: a self-defined preprocess_net which output a
flattened hidden state.
:param action_shape: a sequence of int for the shape of action.
:param hidden_sizes: a sequence of int for constructing the MLP after
preprocess_net. Default to empty sequence (where the MLP now contains
only a single linear layer).
:param max_action: the scale for the final action logits. Default to
1.
:param unbounded: whether to apply tanh activation on final logits.
Default to False.
:param conditioned_sigma: True when sigma is calculated from the
input, False when sigma is an independent parameter. Default to False.
:param preprocess_net_output_dim: the output dimension of
preprocess_net.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
.. seealso::
Please refer to :class:`~tianshou.utils.net.common.Net` as an instance
of how preprocess_net is suggested to be defined.
"""
# TODO: force kwargs, adjust downstream code
def __init__(
self,
preprocess_net: nn.Module,
action_shape: TActionShape,
hidden_sizes: Sequence[int] = (),
max_action: float = 1.0,
device: str | int | torch.device = "cpu",
unbounded: bool = False,
conditioned_sigma: bool = False,
preprocess_net_output_dim: int | None = None,
) -> None:
super().__init__()
if unbounded and not np.isclose(max_action, 1.0):
warnings.warn("Note that max_action input will be discarded when unbounded is True.")
max_action = 1.0
self.preprocess = preprocess_net
self.device = device
self.output_dim = int(np.prod(action_shape))
input_dim = getattr(preprocess_net, "output_dim", preprocess_net_output_dim)
self.mu = MLP(input_dim, self.output_dim, hidden_sizes, device=self.device) # type: ignore
self._c_sigma = conditioned_sigma
if conditioned_sigma:
self.sigma = MLP(
input_dim, # type: ignore
self.output_dim,
hidden_sizes,
device=self.device,
)
else:
self.sigma_param = nn.Parameter(torch.zeros(self.output_dim, 1))
self.max_action = max_action
self._unbounded = unbounded
def get_preprocess_net(self) -> nn.Module:
return self.preprocess
def get_output_dim(self) -> int:
return self.output_dim
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any = None,
info: dict[str, Any] | None = None,
) -> tuple[tuple[torch.Tensor, torch.Tensor], Any]:
"""Mapping: obs -> logits -> (mu, sigma)."""
if info is None:
info = {}
logits, hidden = self.preprocess(obs, state)
mu = self.mu(logits)
if not self._unbounded:
mu = self.max_action * torch.tanh(mu)
if self._c_sigma:
sigma = torch.clamp(self.sigma(logits), min=SIGMA_MIN, max=SIGMA_MAX).exp()
else:
shape = [1] * len(mu.shape)
shape[1] = -1
sigma = (self.sigma_param.view(shape) + torch.zeros_like(mu)).exp()
return (mu, sigma), state
class RecurrentActorProb(nn.Module):
"""Recurrent version of ActorProb.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
layer_num: int,
state_shape: Sequence[int],
action_shape: Sequence[int],
hidden_layer_size: int = 128,
max_action: float = 1.0,
device: str | int | torch.device = "cpu",
unbounded: bool = False,
conditioned_sigma: bool = False,
) -> None:
super().__init__()
if unbounded and not np.isclose(max_action, 1.0):
warnings.warn("Note that max_action input will be discarded when unbounded is True.")
max_action = 1.0
self.device = device
self.nn = nn.LSTM(
input_size=int(np.prod(state_shape)),
hidden_size=hidden_layer_size,
num_layers=layer_num,
batch_first=True,
)
output_dim = int(np.prod(action_shape))
self.mu = nn.Linear(hidden_layer_size, output_dim)
self._c_sigma = conditioned_sigma
if conditioned_sigma:
self.sigma = nn.Linear(hidden_layer_size, output_dim)
else:
self.sigma_param = nn.Parameter(torch.zeros(output_dim, 1))
self.max_action = max_action
self._unbounded = unbounded
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: dict[str, torch.Tensor] | None = None,
info: dict[str, Any] | None = None,
) -> tuple[tuple[torch.Tensor, torch.Tensor], dict[str, torch.Tensor]]:
"""Almost the same as :class:`~tianshou.utils.net.common.Recurrent`."""
if info is None:
info = {}
obs = torch.as_tensor(
obs,
device=self.device,
dtype=torch.float32,
)
# obs [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
if len(obs.shape) == 2:
obs = obs.unsqueeze(-2)
self.nn.flatten_parameters()
if state is None:
obs, (hidden, cell) = self.nn(obs)
else:
# we store the stack data in [bsz, len, ...] format
# but pytorch rnn needs [len, bsz, ...]
obs, (hidden, cell) = self.nn(
obs,
(
state["hidden"].transpose(0, 1).contiguous(),
state["cell"].transpose(0, 1).contiguous(),
),
)
logits = obs[:, -1]
mu = self.mu(logits)
if not self._unbounded:
mu = self.max_action * torch.tanh(mu)
if self._c_sigma:
sigma = torch.clamp(self.sigma(logits), min=SIGMA_MIN, max=SIGMA_MAX).exp()
else:
shape = [1] * len(mu.shape)
shape[1] = -1
sigma = (self.sigma_param.view(shape) + torch.zeros_like(mu)).exp()
# please ensure the first dim is batch size: [bsz, len, ...]
return (mu, sigma), {
"hidden": hidden.transpose(0, 1).detach(),
"cell": cell.transpose(0, 1).detach(),
}
class RecurrentCritic(nn.Module):
"""Recurrent version of Critic.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
layer_num: int,
state_shape: Sequence[int],
action_shape: Sequence[int] = [0],
device: str | int | torch.device = "cpu",
hidden_layer_size: int = 128,
) -> None:
super().__init__()
self.state_shape = state_shape
self.action_shape = action_shape
self.device = device
self.nn = nn.LSTM(
input_size=int(np.prod(state_shape)),
hidden_size=hidden_layer_size,
num_layers=layer_num,
batch_first=True,
)
self.fc2 = nn.Linear(hidden_layer_size + int(np.prod(action_shape)), 1)
def forward(
self,
obs: np.ndarray | torch.Tensor,
act: np.ndarray | torch.Tensor | None = None,
info: dict[str, Any] | None = None,
) -> torch.Tensor:
"""Almost the same as :class:`~tianshou.utils.net.common.Recurrent`."""
if info is None:
info = {}
obs = torch.as_tensor(
obs,
device=self.device,
dtype=torch.float32,
)
# obs [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
assert len(obs.shape) == 3
self.nn.flatten_parameters()
obs, (hidden, cell) = self.nn(obs)
obs = obs[:, -1]
if act is not None:
act = torch.as_tensor(
act,
device=self.device,
dtype=torch.float32,
)
obs = torch.cat([obs, act], dim=1)
return self.fc2(obs)
class Perturbation(nn.Module):
"""Implementation of perturbation network in BCQ algorithm.
Given a state and action, it can generate perturbed action.
:param preprocess_net: a self-defined preprocess_net which output a
flattened hidden state.
:param max_action: the maximum value of each dimension of action.
:param device: which device to create this model on.
Default to cpu.
:param phi: max perturbation parameter for BCQ. Default to 0.05.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
.. seealso::
You can refer to `examples/offline/offline_bcq.py` to see how to use it.
"""
def __init__(
self,
preprocess_net: nn.Module,
max_action: float,
device: str | int | torch.device = "cpu",
phi: float = 0.05,
):
# preprocess_net: input_dim=state_dim+action_dim, output_dim=action_dim
super().__init__()
self.preprocess_net = preprocess_net
self.device = device
self.max_action = max_action
self.phi = phi
def forward(self, state: torch.Tensor, action: torch.Tensor) -> torch.Tensor:
# preprocess_net
logits = self.preprocess_net(torch.cat([state, action], -1))[0]
noise = self.phi * self.max_action * torch.tanh(logits)
# clip to [-max_action, max_action]
return (noise + action).clamp(-self.max_action, self.max_action)
class VAE(nn.Module):
"""Implementation of VAE.
It models the distribution of action. Given a state, it can generate actions similar to those in batch.
It is used in BCQ algorithm.
:param encoder: the encoder in VAE. Its input_dim must be
state_dim + action_dim, and output_dim must be hidden_dim.
:param decoder: the decoder in VAE. Its input_dim must be
state_dim + latent_dim, and output_dim must be action_dim.
:param hidden_dim: the size of the last linear-layer in encoder.
:param latent_dim: the size of latent layer.
:param max_action: the maximum value of each dimension of action.
:param device: which device to create this model on.
Default to "cpu".
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
.. seealso::
You can refer to `examples/offline/offline_bcq.py` to see how to use it.
"""
def __init__(
self,
encoder: nn.Module,
decoder: nn.Module,
hidden_dim: int,
latent_dim: int,
max_action: float,
device: str | torch.device = "cpu",
):
super().__init__()
self.encoder = encoder
self.mean = nn.Linear(hidden_dim, latent_dim)
self.log_std = nn.Linear(hidden_dim, latent_dim)
self.decoder = decoder
self.max_action = max_action
self.latent_dim = latent_dim
self.device = device
def forward(
self,
state: torch.Tensor,
action: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# [state, action] -> z , [state, z] -> action
latent_z = self.encoder(torch.cat([state, action], -1))
# shape of z: (state.shape[:-1], hidden_dim)
mean = self.mean(latent_z)
# Clamped for numerical stability
log_std = self.log_std(latent_z).clamp(-4, 15)
std = torch.exp(log_std)
# shape of mean, std: (state.shape[:-1], latent_dim)
latent_z = mean + std * torch.randn_like(std) # (state.shape[:-1], latent_dim)
reconstruction = self.decode(state, latent_z) # (state.shape[:-1], action_dim)
return reconstruction, mean, std
def decode(
self,
state: torch.Tensor,
latent_z: torch.Tensor | None = None,
) -> torch.Tensor:
# decode(state) -> action
if latent_z is None:
# state.shape[0] may be batch_size
# latent vector clipped to [-0.5, 0.5]
latent_z = (
torch.randn(state.shape[:-1] + (self.latent_dim,)).to(self.device).clamp(-0.5, 0.5)
)
# decode z with state!
return self.max_action * torch.tanh(self.decoder(torch.cat([state, latent_z], -1)))