Michael Panchenko 2cc34fb72b
Poetry install, remove gym, bump python (#925)
Closes #914 

Additional changes:

- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible

Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
2023-09-05 14:34:23 -07:00

598 lines
23 KiB
Python

from abc import ABC, abstractmethod
from collections.abc import Callable, Sequence
from typing import Any, no_type_check
import numpy as np
import torch
from torch import nn
from tianshou.data.batch import Batch
from tianshou.data.types import RecurrentStateBatch
ModuleType = type[nn.Module]
ArgsType = tuple[Any, ...] | dict[Any, Any] | Sequence[tuple[Any, ...]] | Sequence[dict[Any, Any]]
def miniblock(
input_size: int,
output_size: int = 0,
norm_layer: ModuleType | None = None,
norm_args: tuple[Any, ...] | dict[Any, Any] | None = None,
activation: ModuleType | None = None,
act_args: tuple[Any, ...] | dict[Any, Any] | None = None,
linear_layer: type[nn.Linear] = nn.Linear,
) -> list[nn.Module]:
"""Construct a miniblock with given input/output-size, norm layer and activation."""
layers: list[nn.Module] = [linear_layer(input_size, output_size)]
if norm_layer is not None:
if isinstance(norm_args, tuple):
layers += [norm_layer(output_size, *norm_args)]
elif isinstance(norm_args, dict):
layers += [norm_layer(output_size, **norm_args)]
else:
layers += [norm_layer(output_size)]
if activation is not None:
if isinstance(act_args, tuple):
layers += [activation(*act_args)]
elif isinstance(act_args, dict):
layers += [activation(**act_args)]
else:
layers += [activation()]
return layers
class MLP(nn.Module):
"""Simple MLP backbone.
Create a MLP of size input_dim * hidden_sizes[0] * hidden_sizes[1] * ...
* hidden_sizes[-1] * output_dim
:param int input_dim: dimension of the input vector.
:param int output_dim: dimension of the output vector. If set to 0, there
is no final linear layer.
:param hidden_sizes: shape of MLP passed in as a list, not including
input_dim and output_dim.
:param norm_layer: use which normalization before activation, e.g.,
``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization.
You can also pass a list of normalization modules with the same length
of hidden_sizes, to use different normalization module in different
layers. Default to no normalization.
:param activation: which activation to use after each layer, can be both
the same activation for all layers if passed in nn.Module, or different
activation for different Modules if passed in a list. Default to
nn.ReLU.
:param device: which device to create this model on. Default to None.
:param linear_layer: use this module as linear layer. Default to nn.Linear.
:param bool flatten_input: whether to flatten input data. Default to True.
"""
def __init__(
self,
input_dim: int,
output_dim: int = 0,
hidden_sizes: Sequence[int] = (),
norm_layer: ModuleType | Sequence[ModuleType] | None = None,
norm_args: ArgsType | None = None,
activation: ModuleType | Sequence[ModuleType] | None = nn.ReLU,
act_args: ArgsType | None = None,
device: str | int | torch.device | None = None,
linear_layer: type[nn.Linear] = nn.Linear,
flatten_input: bool = True,
) -> None:
super().__init__()
self.device = device
if norm_layer:
if isinstance(norm_layer, list):
assert len(norm_layer) == len(hidden_sizes)
norm_layer_list = norm_layer
if isinstance(norm_args, list):
assert len(norm_args) == len(hidden_sizes)
norm_args_list = norm_args
else:
norm_args_list = [norm_args for _ in range(len(hidden_sizes))]
else:
norm_layer_list = [norm_layer for _ in range(len(hidden_sizes))]
norm_args_list = [norm_args for _ in range(len(hidden_sizes))]
else:
norm_layer_list = [None] * len(hidden_sizes)
norm_args_list = [None] * len(hidden_sizes)
if activation:
if isinstance(activation, list):
assert len(activation) == len(hidden_sizes)
activation_list = activation
if isinstance(act_args, list):
assert len(act_args) == len(hidden_sizes)
act_args_list = act_args
else:
act_args_list = [act_args for _ in range(len(hidden_sizes))]
else:
activation_list = [activation for _ in range(len(hidden_sizes))]
act_args_list = [act_args for _ in range(len(hidden_sizes))]
else:
activation_list = [None] * len(hidden_sizes)
act_args_list = [None] * len(hidden_sizes)
hidden_sizes = [input_dim, *list(hidden_sizes)]
model = []
for in_dim, out_dim, norm, norm_args, activ, act_args in zip(
hidden_sizes[:-1],
hidden_sizes[1:],
norm_layer_list,
norm_args_list,
activation_list,
act_args_list,
strict=True,
):
model += miniblock(in_dim, out_dim, norm, norm_args, activ, act_args, linear_layer)
if output_dim > 0:
model += [linear_layer(hidden_sizes[-1], output_dim)]
self.output_dim = output_dim or hidden_sizes[-1]
self.model = nn.Sequential(*model)
self.flatten_input = flatten_input
@no_type_check
def forward(self, obs: np.ndarray | torch.Tensor) -> torch.Tensor:
obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32)
if self.flatten_input:
obs = obs.flatten(1)
return self.model(obs)
class NetBase(nn.Module, ABC):
"""Interface for NNs used in policies."""
@abstractmethod
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any = None,
**kwargs: Any,
) -> tuple[torch.Tensor, Any]:
pass
class Net(NetBase):
"""Wrapper of MLP to support more specific DRL usage.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
:param state_shape: int or a sequence of int of the shape of state.
:param action_shape: int or a sequence of int of the shape of action.
:param hidden_sizes: shape of MLP passed in as a list.
:param norm_layer: use which normalization before activation, e.g.,
``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization.
You can also pass a list of normalization modules with the same length
of hidden_sizes, to use different normalization module in different
layers. Default to no normalization.
:param activation: which activation to use after each layer, can be both
the same activation for all layers if passed in nn.Module, or different
activation for different Modules if passed in a list. Default to
nn.ReLU.
:param device: specify the device when the network actually runs. Default
to "cpu".
:param bool softmax: whether to apply a softmax layer over the last layer's
output.
:param bool concat: whether the input shape is concatenated by state_shape
and action_shape. If it is True, ``action_shape`` is not the output
shape, but affects the input shape only.
:param int num_atoms: in order to expand to the net of distributional RL.
Default to 1 (not use).
:param bool dueling_param: whether to use dueling network to calculate Q
values (for Dueling DQN). If you want to use dueling option, you should
pass a tuple of two dict (first for Q and second for V) stating
self-defined arguments as stated in
class:`~tianshou.utils.net.common.MLP`. Default to None.
:param linear_layer: use this module as linear layer. Default to nn.Linear.
.. seealso::
Please refer to :class:`~tianshou.utils.net.common.MLP` for more
detailed explanation on the usage of activation, norm_layer, etc.
You can also refer to :class:`~tianshou.utils.net.continuous.Actor`,
:class:`~tianshou.utils.net.continuous.Critic`, etc, to see how it's
suggested be used.
"""
def __init__(
self,
state_shape: int | Sequence[int],
action_shape: int | Sequence[int] = 0,
hidden_sizes: Sequence[int] = (),
norm_layer: ModuleType | Sequence[ModuleType] | None = None,
norm_args: ArgsType | None = None,
activation: ModuleType | Sequence[ModuleType] | None = nn.ReLU,
act_args: ArgsType | None = None,
device: str | int | torch.device = "cpu",
softmax: bool = False,
concat: bool = False,
num_atoms: int = 1,
dueling_param: tuple[dict[str, Any], dict[str, Any]] | None = None,
linear_layer: type[nn.Linear] = nn.Linear,
) -> None:
super().__init__()
self.device = device
self.softmax = softmax
self.num_atoms = num_atoms
self.Q: MLP | None = None
self.V: MLP | None = None
input_dim = int(np.prod(state_shape))
action_dim = int(np.prod(action_shape)) * num_atoms
if concat:
input_dim += action_dim
self.use_dueling = dueling_param is not None
output_dim = action_dim if not self.use_dueling and not concat else 0
self.model = MLP(
input_dim,
output_dim,
hidden_sizes,
norm_layer,
norm_args,
activation,
act_args,
device,
linear_layer,
)
if self.use_dueling: # dueling DQN
assert dueling_param is not None
kwargs_update = {
"input_dim": self.model.output_dim,
"device": self.device,
}
# Important: don't change the original dict (e.g., don't use .update())
q_kwargs = {**dueling_param[0], **kwargs_update}
v_kwargs = {**dueling_param[1], **kwargs_update}
q_kwargs["output_dim"] = 0 if concat else action_dim
v_kwargs["output_dim"] = 0 if concat else num_atoms
self.Q, self.V = MLP(**q_kwargs), MLP(**v_kwargs)
self.output_dim = self.Q.output_dim
else:
self.output_dim = self.model.output_dim
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any = None,
**kwargs: Any,
) -> tuple[torch.Tensor, Any]:
"""Mapping: obs -> flatten (inside MLP)-> logits.
:param obs:
:param state: unused and returned as is
:param kwargs: unused
"""
logits = self.model(obs)
batch_size = logits.shape[0]
if self.use_dueling: # Dueling DQN
assert self.Q is not None
assert self.V is not None
q, v = self.Q(logits), self.V(logits)
if self.num_atoms > 1:
q = q.view(batch_size, -1, self.num_atoms)
v = v.view(batch_size, -1, self.num_atoms)
logits = q - q.mean(dim=1, keepdim=True) + v
elif self.num_atoms > 1:
logits = logits.view(batch_size, -1, self.num_atoms)
if self.softmax:
logits = torch.softmax(logits, dim=-1)
return logits, state
class Recurrent(NetBase):
"""Simple Recurrent network based on LSTM.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
layer_num: int,
state_shape: int | Sequence[int],
action_shape: int | Sequence[int],
device: str | int | torch.device = "cpu",
hidden_layer_size: int = 128,
) -> None:
super().__init__()
self.device = device
self.nn = nn.LSTM(
input_size=hidden_layer_size,
hidden_size=hidden_layer_size,
num_layers=layer_num,
batch_first=True,
)
self.fc1 = nn.Linear(int(np.prod(state_shape)), hidden_layer_size)
self.fc2 = nn.Linear(hidden_layer_size, int(np.prod(action_shape)))
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: RecurrentStateBatch | dict[str, torch.Tensor] | None = None,
**kwargs: Any,
) -> tuple[torch.Tensor, dict[str, torch.Tensor]]:
"""Mapping: obs -> flatten -> logits.
In the evaluation mode, `obs` should be with shape ``[bsz, dim]``; in the
training mode, `obs` should be with shape ``[bsz, len, dim]``. See the code
and comment for more detail.
:param obs:
:param state: either None or a dict with keys 'hidden' and 'cell'
:param kwargs: unused
:return: predicted action, next state as dict with keys 'hidden' and 'cell'
"""
# Note: the original type of state is Batch but it might also be a dict
# If it is a Batch, .issubset(state) will not work. However,
# issubset(state.keys()) always works
if state is not None and not {"hidden", "cell"}.issubset(state.keys()):
raise ValueError(
f"Expected to find keys 'hidden' and 'cell' but instead found {state.keys()}",
)
obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32)
# obs [bsz, len, dim] (training) or [bsz, dim] (evaluation)
# In short, the tensor's shape in training phase is longer than which
# in evaluation phase.
if len(obs.shape) == 2:
obs = obs.unsqueeze(-2)
obs = self.fc1(obs)
self.nn.flatten_parameters()
if state is None:
obs, (hidden, cell) = self.nn(obs)
else:
# we store the stack data in [bsz, len, ...] format
# but pytorch rnn needs [len, bsz, ...]
obs, (hidden, cell) = self.nn(
obs,
(
state["hidden"].transpose(0, 1).contiguous(),
state["cell"].transpose(0, 1).contiguous(),
),
)
obs = self.fc2(obs[:, -1])
# please ensure the first dim is batch size: [bsz, len, ...]
return obs, {
"hidden": hidden.transpose(0, 1).detach(),
"cell": cell.transpose(0, 1).detach(),
}
class ActorCritic(nn.Module):
"""An actor-critic network for parsing parameters.
Using ``actor_critic.parameters()`` instead of set.union or list+list to avoid
issue #449.
:param nn.Module actor: the actor network.
:param nn.Module critic: the critic network.
"""
def __init__(self, actor: nn.Module, critic: nn.Module) -> None:
super().__init__()
self.actor = actor
self.critic = critic
class DataParallelNet(nn.Module):
"""DataParallel wrapper for training agent with multi-GPU.
This class does only the conversion of input data type, from numpy array to torch's
Tensor. If the input is a nested dictionary, the user should create a similar class
to do the same thing.
:param nn.Module net: the network to be distributed in different GPUs.
"""
def __init__(self, net: nn.Module) -> None:
super().__init__()
self.net = nn.DataParallel(net)
def forward(
self,
obs: np.ndarray | torch.Tensor,
*args: Any,
**kwargs: Any,
) -> tuple[Any, Any]:
if not isinstance(obs, torch.Tensor):
obs = torch.as_tensor(obs, dtype=torch.float32)
return self.net(obs=obs.cuda(), *args, **kwargs) # noqa: B026
class EnsembleLinear(nn.Module):
"""Linear Layer of Ensemble network.
:param int ensemble_size: Number of subnets in the ensemble.
:param int in_feature: dimension of the input vector.
:param int out_feature: dimension of the output vector.
:param bool bias: whether to include an additive bias, default to be True.
"""
def __init__(
self,
ensemble_size: int,
in_feature: int,
out_feature: int,
bias: bool = True,
) -> None:
super().__init__()
# To be consistent with PyTorch default initializer
k = np.sqrt(1.0 / in_feature)
weight_data = torch.rand((ensemble_size, in_feature, out_feature)) * 2 * k - k
self.weight = nn.Parameter(weight_data, requires_grad=True)
self.bias_weights: nn.Parameter | None = None
if bias:
bias_data = torch.rand((ensemble_size, 1, out_feature)) * 2 * k - k
self.bias_weights = nn.Parameter(bias_data, requires_grad=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = torch.matmul(x, self.weight)
if self.bias_weights is not None:
x = x + self.bias_weights
return x
class BranchingNet(NetBase):
"""Branching dual Q network.
Network for the BranchingDQNPolicy, it uses a common network module, a value module
and action "branches" one for each dimension.It allows for a linear scaling
of Q-value the output w.r.t. the number of dimensions in the action space.
For more info please refer to: arXiv:1711.08946.
:param state_shape: int or a sequence of int of the shape of state.
:param action_shape: int or a sequence of int of the shape of action.
:param action_peer_branch: int or a sequence of int of the number of actions in
each dimension.
:param common_hidden_sizes: shape of the common MLP network passed in as a list.
:param value_hidden_sizes: shape of the value MLP network passed in as a list.
:param action_hidden_sizes: shape of the action MLP network passed in as a list.
:param norm_layer: use which normalization before activation, e.g.,
``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization.
You can also pass a list of normalization modules with the same length
of hidden_sizes, to use different normalization module in different
layers. Default to no normalization.
:param activation: which activation to use after each layer, can be both
the same activation for all layers if passed in nn.Module, or different
activation for different Modules if passed in a list. Default to
nn.ReLU.
:param device: specify the device when the network actually runs. Default
to "cpu".
:param bool softmax: whether to apply a softmax layer over the last layer's
output.
"""
def __init__(
self,
state_shape: int | Sequence[int],
num_branches: int = 0,
action_per_branch: int = 2,
common_hidden_sizes: list[int] | None = None,
value_hidden_sizes: list[int] | None = None,
action_hidden_sizes: list[int] | None = None,
norm_layer: ModuleType | None = None,
norm_args: ArgsType | None = None,
activation: ModuleType | None = nn.ReLU,
act_args: ArgsType | None = None,
device: str | int | torch.device = "cpu",
) -> None:
super().__init__()
common_hidden_sizes = common_hidden_sizes or []
value_hidden_sizes = value_hidden_sizes or []
action_hidden_sizes = action_hidden_sizes or []
self.device = device
self.num_branches = num_branches
self.action_per_branch = action_per_branch
# common network
common_input_dim = int(np.prod(state_shape))
common_output_dim = 0
self.common = MLP(
common_input_dim,
common_output_dim,
common_hidden_sizes,
norm_layer,
norm_args,
activation,
act_args,
device,
)
# value network
value_input_dim = common_hidden_sizes[-1]
value_output_dim = 1
self.value = MLP(
value_input_dim,
value_output_dim,
value_hidden_sizes,
norm_layer,
norm_args,
activation,
act_args,
device,
)
# action branching network
action_input_dim = common_hidden_sizes[-1]
action_output_dim = action_per_branch
self.branches = nn.ModuleList(
[
MLP(
action_input_dim,
action_output_dim,
action_hidden_sizes,
norm_layer,
norm_args,
activation,
act_args,
device,
)
for _ in range(self.num_branches)
],
)
def forward(
self,
obs: np.ndarray | torch.Tensor,
state: Any = None,
**kwargs: Any,
) -> tuple[torch.Tensor, Any]:
"""Mapping: obs -> model -> logits."""
common_out = self.common(obs)
value_out = self.value(common_out)
value_out = torch.unsqueeze(value_out, 1)
action_out = []
for b in self.branches:
action_out.append(b(common_out))
action_scores = torch.stack(action_out, 1)
action_scores = action_scores - torch.mean(action_scores, 2, keepdim=True)
logits = value_out + action_scores
return logits, state
def get_dict_state_decorator(
state_shape: dict[str, int | Sequence[int]],
keys: Sequence[str],
) -> tuple[Callable, int]:
"""A helper function to make Net or equivalent classes (e.g. Actor, Critic) applicable to dict state.
The first return item, ``decorator_fn``, will alter the implementation of forward
function of the given class by preprocessing the observation. The preprocessing is
basically flatten the observation and concatenate them based on the ``keys`` order.
The batch dimension is preserved if presented. The result observation shape will
be equal to ``new_state_shape``, the second return item.
:param state_shape: A dictionary indicating each state's shape
:param keys: A list of state's keys. The flatten observation will be according to
this list order.
:returns: a 2-items tuple ``decorator_fn`` and ``new_state_shape``
"""
original_shape = state_shape
flat_state_shapes = []
for k in keys:
flat_state_shapes.append(int(np.prod(state_shape[k])))
new_state_shape = sum(flat_state_shapes)
def preprocess_obs(obs: Batch | dict | torch.Tensor | np.ndarray) -> torch.Tensor:
if isinstance(obs, dict) or (isinstance(obs, Batch) and keys[0] in obs):
if original_shape[keys[0]] == obs[keys[0]].shape:
# No batch dim
new_obs = torch.Tensor([obs[k] for k in keys]).flatten()
# new_obs = torch.Tensor([obs[k] for k in keys]).reshape(1, -1)
else:
bsz = obs[keys[0]].shape[0]
new_obs = torch.cat([torch.Tensor(obs[k].reshape(bsz, -1)) for k in keys], dim=1)
else:
new_obs = torch.Tensor(obs)
return new_obs
@no_type_check
def decorator_fn(net_class):
class new_net_class(net_class):
def forward(self, obs: np.ndarray | torch.Tensor, *args, **kwargs) -> Any:
return super().forward(preprocess_obs(obs), *args, **kwargs)
return new_net_class
return decorator_fn, new_state_shape