Fix #195: Add mypy test in .github/workflows/docs_and_lint.yml. Also remove the out-of-the-date api
162 lines
5.6 KiB
Python
162 lines
5.6 KiB
Python
import torch
|
|
import numpy as np
|
|
from torch import nn
|
|
from typing import Any, Dict, List, Tuple, Union, Callable, Optional, Sequence
|
|
|
|
from tianshou.data import to_torch
|
|
|
|
|
|
def miniblock(
|
|
inp: int,
|
|
oup: int,
|
|
norm_layer: Optional[Callable[[int], nn.modules.Module]],
|
|
) -> List[nn.modules.Module]:
|
|
"""Construct a miniblock with given input/output-size and norm layer."""
|
|
ret: List[nn.modules.Module] = [nn.Linear(inp, oup)]
|
|
if norm_layer is not None:
|
|
ret += [norm_layer(oup)]
|
|
ret += [nn.ReLU(inplace=True)]
|
|
return ret
|
|
|
|
|
|
class Net(nn.Module):
|
|
"""Simple MLP backbone.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
|
|
:param bool concat: whether the input shape is concatenated by state_shape
|
|
and action_shape. If it is True, ``action_shape`` is not the output
|
|
shape, but affects the input shape.
|
|
:param bool dueling: whether to use dueling network to calculate Q values
|
|
(for Dueling DQN), defaults to False.
|
|
:param norm_layer: use which normalization before ReLU, e.g.,
|
|
``nn.LayerNorm`` and ``nn.BatchNorm1d``, defaults to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
layer_num: int,
|
|
state_shape: tuple,
|
|
action_shape: Optional[Union[tuple, int]] = 0,
|
|
device: Union[str, int, torch.device] = "cpu",
|
|
softmax: bool = False,
|
|
concat: bool = False,
|
|
hidden_layer_size: int = 128,
|
|
dueling: Optional[Tuple[int, int]] = None,
|
|
norm_layer: Optional[Callable[[int], nn.modules.Module]] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.device = device
|
|
self.dueling = dueling
|
|
self.softmax = softmax
|
|
input_size = np.prod(state_shape)
|
|
if concat:
|
|
input_size += np.prod(action_shape)
|
|
|
|
model = miniblock(input_size, hidden_layer_size, norm_layer)
|
|
|
|
for i in range(layer_num):
|
|
model += miniblock(
|
|
hidden_layer_size, hidden_layer_size, norm_layer)
|
|
|
|
if dueling is None:
|
|
if action_shape and not concat:
|
|
model += [nn.Linear(hidden_layer_size, np.prod(action_shape))]
|
|
else: # dueling DQN
|
|
q_layer_num, v_layer_num = dueling
|
|
Q, V = [], []
|
|
|
|
for i in range(q_layer_num):
|
|
Q += miniblock(
|
|
hidden_layer_size, hidden_layer_size, norm_layer)
|
|
for i in range(v_layer_num):
|
|
V += miniblock(
|
|
hidden_layer_size, hidden_layer_size, norm_layer)
|
|
|
|
if action_shape and not concat:
|
|
Q += [nn.Linear(hidden_layer_size, np.prod(action_shape))]
|
|
V += [nn.Linear(hidden_layer_size, 1)]
|
|
|
|
self.Q = nn.Sequential(*Q)
|
|
self.V = nn.Sequential(*V)
|
|
self.model = nn.Sequential(*model)
|
|
|
|
def forward(
|
|
self,
|
|
s: Union[np.ndarray, torch.Tensor],
|
|
state: Optional[Any] = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> Tuple[torch.Tensor, Any]:
|
|
"""Mapping: s -> flatten -> logits."""
|
|
s = to_torch(s, device=self.device, dtype=torch.float32)
|
|
s = s.reshape(s.size(0), -1)
|
|
logits = self.model(s)
|
|
if self.dueling is not None: # Dueling DQN
|
|
q, v = self.Q(logits), self.V(logits)
|
|
logits = q - q.mean(dim=1, keepdim=True) + v
|
|
if self.softmax:
|
|
logits = torch.softmax(logits, dim=-1)
|
|
return logits, state
|
|
|
|
|
|
class Recurrent(nn.Module):
|
|
"""Simple Recurrent network based on LSTM.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
layer_num: int,
|
|
state_shape: Sequence[int],
|
|
action_shape: Sequence[int],
|
|
device: Union[str, int, torch.device] = "cpu",
|
|
hidden_layer_size: int = 128,
|
|
) -> None:
|
|
super().__init__()
|
|
self.state_shape = state_shape
|
|
self.action_shape = action_shape
|
|
self.device = device
|
|
self.nn = nn.LSTM(
|
|
input_size=hidden_layer_size,
|
|
hidden_size=hidden_layer_size,
|
|
num_layers=layer_num,
|
|
batch_first=True,
|
|
)
|
|
self.fc1 = nn.Linear(np.prod(state_shape), hidden_layer_size)
|
|
self.fc2 = nn.Linear(hidden_layer_size, np.prod(action_shape))
|
|
|
|
def forward(
|
|
self,
|
|
s: Union[np.ndarray, torch.Tensor],
|
|
state: Optional[Dict[str, torch.Tensor]] = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
|
"""Mapping: s -> flatten -> logits.
|
|
|
|
In the evaluation mode, s should be with shape ``[bsz, dim]``; in the
|
|
training mode, s should be with shape ``[bsz, len, dim]``. See the code
|
|
and comment for more detail.
|
|
"""
|
|
s = to_torch(s, device=self.device, dtype=torch.float32)
|
|
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
|
|
# In short, the tensor's shape in training phase is longer than which
|
|
# in evaluation phase.
|
|
if len(s.shape) == 2:
|
|
s = s.unsqueeze(-2)
|
|
s = self.fc1(s)
|
|
self.nn.flatten_parameters()
|
|
if state is None:
|
|
s, (h, c) = self.nn(s)
|
|
else:
|
|
# we store the stack data in [bsz, len, ...] format
|
|
# but pytorch rnn needs [len, bsz, ...]
|
|
s, (h, c) = self.nn(s, (state["h"].transpose(0, 1).contiguous(),
|
|
state["c"].transpose(0, 1).contiguous()))
|
|
s = self.fc2(s[:, -1])
|
|
# please ensure the first dim is batch size: [bsz, len, ...]
|
|
return s, {"h": h.transpose(0, 1).detach(),
|
|
"c": c.transpose(0, 1).detach()}
|