Tianshou/tianshou/highlevel/experiment.py
Dominik Jain b54fcd12cb Change high-level DQN interface to expect an actor instead of a critic,
because that is what is functionally required
2023-10-18 20:44:16 +02:00

581 lines
19 KiB
Python

import logging
from abc import abstractmethod
from collections.abc import Callable, Sequence
from dataclasses import dataclass
from pprint import pprint
from typing import Generic, Self, TypeVar
import numpy as np
import torch
from tianshou.data import Collector
from tianshou.highlevel.agent import (
A2CAgentFactory,
AgentFactory,
DDPGAgentFactory,
DQNAgentFactory,
PPOAgentFactory,
SACAgentFactory,
TD3AgentFactory,
)
from tianshou.highlevel.config import RLSamplingConfig
from tianshou.highlevel.env import EnvFactory, Environments
from tianshou.highlevel.logger import DefaultLoggerFactory, LoggerFactory
from tianshou.highlevel.module.actor import (
ActorFactory,
ActorFactoryDefault,
ContinuousActorType,
)
from tianshou.highlevel.module.critic import CriticFactory, CriticFactoryDefault
from tianshou.highlevel.optim import OptimizerFactory, OptimizerFactoryAdam
from tianshou.highlevel.params.policy_params import (
A2CParams,
DDPGParams,
DQNParams,
PPOParams,
SACParams,
TD3Params,
)
from tianshou.highlevel.params.policy_wrapper import PolicyWrapperFactory
from tianshou.highlevel.persistence import PersistableConfigProtocol
from tianshou.highlevel.trainer import (
TrainerCallbacks,
TrainerEpochCallback,
TrainerStopCallback,
)
from tianshou.policy import BasePolicy
from tianshou.trainer import BaseTrainer
from tianshou.utils.string import ToStringMixin
log = logging.getLogger(__name__)
TPolicy = TypeVar("TPolicy", bound=BasePolicy)
TTrainer = TypeVar("TTrainer", bound=BaseTrainer)
@dataclass
class RLExperimentConfig:
"""Generic config for setting up the experiment, not RL or training specific."""
seed: int = 42
render: float | None = 0.0
"""Milliseconds between rendered frames; if None, no rendering"""
device: str = "cuda" if torch.cuda.is_available() else "cpu"
resume_id: str | None = None
"""For restoring a model and running means of env-specifics from a checkpoint"""
resume_path: str | None = None
"""For restoring a model and running means of env-specifics from a checkpoint"""
watch: bool = False
"""If True, will not perform training and only watch the restored policy"""
watch_num_episodes = 10
class RLExperiment(Generic[TPolicy, TTrainer], ToStringMixin):
def __init__(
self,
config: RLExperimentConfig,
env_factory: EnvFactory | Callable[[PersistableConfigProtocol | None], Environments],
agent_factory: AgentFactory,
logger_factory: LoggerFactory | None = None,
env_config: PersistableConfigProtocol | None = None,
):
if logger_factory is None:
logger_factory = DefaultLoggerFactory()
self.config = config
self.env_factory = env_factory
self.agent_factory = agent_factory
self.logger_factory = logger_factory
self.env_config = env_config
def _set_seed(self) -> None:
seed = self.config.seed
np.random.seed(seed)
torch.manual_seed(seed)
def _build_config_dict(self) -> dict:
return {
# TODO
}
def run(self, log_name: str) -> None:
self._set_seed()
envs = self.env_factory(self.env_config)
full_config = self._build_config_dict()
full_config.update(envs.info())
run_id = self.config.resume_id
logger = self.logger_factory.create_logger(
log_name=log_name,
run_id=run_id,
config_dict=full_config,
)
policy = self.agent_factory.create_policy(envs, self.config.device)
if self.config.resume_path:
self.agent_factory.load_checkpoint(
policy,
self.config.resume_path,
envs,
self.config.device,
)
train_collector, test_collector = self.agent_factory.create_train_test_collector(
policy,
envs,
)
if not self.config.watch:
trainer = self.agent_factory.create_trainer(
policy,
train_collector,
test_collector,
envs,
logger,
)
result = trainer.run()
pprint(result) # TODO logging
self._watch_agent(
self.config.watch_num_episodes,
policy,
test_collector,
self.config.render,
)
@staticmethod
def _watch_agent(num_episodes, policy: BasePolicy, test_collector: Collector, render) -> None:
policy.eval()
test_collector.reset()
result = test_collector.collect(n_episode=num_episodes, render=render)
print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
TBuilder = TypeVar("TBuilder", bound="RLExperimentBuilder")
class RLExperimentBuilder:
def __init__(
self,
experiment_config: RLExperimentConfig,
env_factory: EnvFactory,
sampling_config: RLSamplingConfig,
):
self._config = experiment_config
self._env_factory = env_factory
self._sampling_config = sampling_config
self._logger_factory: LoggerFactory | None = None
self._optim_factory: OptimizerFactory | None = None
self._env_config: PersistableConfigProtocol | None = None
self._policy_wrapper_factory: PolicyWrapperFactory | None = None
self._trainer_callbacks: TrainerCallbacks = TrainerCallbacks()
def with_env_config(self, config: PersistableConfigProtocol) -> Self:
self._env_config = config
return self
def with_logger_factory(self: TBuilder, logger_factory: LoggerFactory) -> TBuilder:
self._logger_factory = logger_factory
return self
def with_policy_wrapper_factory(self, policy_wrapper_factory: PolicyWrapperFactory) -> Self:
self._policy_wrapper_factory = policy_wrapper_factory
return self
def with_optim_factory(self: TBuilder, optim_factory: OptimizerFactory) -> TBuilder:
self._optim_factory = optim_factory
return self
def with_optim_factory_default(
self: TBuilder,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=0,
) -> TBuilder:
"""Configures the use of the default optimizer, Adam, with the given parameters.
:param betas: coefficients used for computing running averages of gradient and its square
:param eps: term added to the denominator to improve numerical stability
:param weight_decay: weight decay (L2 penalty)
:return: the builder
"""
self._optim_factory = OptimizerFactoryAdam(betas=betas, eps=eps, weight_decay=weight_decay)
return self
def with_trainer_epoch_callback_train(self, callback: TrainerEpochCallback) -> Self:
self._trainer_callbacks.epoch_callback_train = callback
return self
def with_trainer_epoch_callback_test(self, callback: TrainerEpochCallback) -> Self:
self._trainer_callbacks.epoch_callback_test = callback
return self
def with_trainer_stop_callback(self, callback: TrainerStopCallback) -> Self:
self._trainer_callbacks.stop_callback = callback
return self
@abstractmethod
def _create_agent_factory(self) -> AgentFactory:
pass
def _get_optim_factory(self) -> OptimizerFactory:
if self._optim_factory is None:
return OptimizerFactoryAdam()
else:
return self._optim_factory
def build(self) -> RLExperiment:
agent_factory = self._create_agent_factory()
agent_factory.set_trainer_callbacks(self._trainer_callbacks)
if self._policy_wrapper_factory:
agent_factory.set_policy_wrapper_factory(self._policy_wrapper_factory)
experiment = RLExperiment(
self._config,
self._env_factory,
agent_factory,
self._logger_factory,
env_config=self._env_config,
)
log.info(f"Created experiment:\n{experiment.pprints()}")
return experiment
class _BuilderMixinActorFactory:
def __init__(self, continuous_actor_type: ContinuousActorType):
self._continuous_actor_type = continuous_actor_type
self._actor_factory: ActorFactory | None = None
def with_actor_factory(self: TBuilder, actor_factory: ActorFactory) -> TBuilder:
self: TBuilder | _BuilderMixinActorFactory
self._actor_factory = actor_factory
return self
def _with_actor_factory_default(
self: TBuilder,
hidden_sizes: Sequence[int],
continuous_unbounded=False,
continuous_conditioned_sigma=False,
) -> TBuilder:
self: TBuilder | _BuilderMixinActorFactory
self._actor_factory = ActorFactoryDefault(
self._continuous_actor_type,
hidden_sizes,
continuous_unbounded=continuous_unbounded,
continuous_conditioned_sigma=continuous_conditioned_sigma,
)
return self
def _get_actor_factory(self):
if self._actor_factory is None:
return ActorFactoryDefault(self._continuous_actor_type)
else:
return self._actor_factory
class _BuilderMixinActorFactory_ContinuousGaussian(_BuilderMixinActorFactory):
"""Specialization of the actor mixin where, in the continuous case, the actor uses a deterministic policy."""
def __init__(self):
super().__init__(ContinuousActorType.GAUSSIAN)
def with_actor_factory_default(
self,
hidden_sizes: Sequence[int],
continuous_unbounded=False,
continuous_conditioned_sigma=False,
) -> Self:
return super()._with_actor_factory_default(
hidden_sizes,
continuous_unbounded=continuous_unbounded,
continuous_conditioned_sigma=continuous_conditioned_sigma,
)
class _BuilderMixinActorFactory_ContinuousDeterministic(_BuilderMixinActorFactory):
"""Specialization of the actor mixin where, in the continuous case, the actor uses a deterministic policy."""
def __init__(self):
super().__init__(ContinuousActorType.DETERMINISTIC)
def with_actor_factory_default(self, hidden_sizes: Sequence[int]) -> Self:
return super()._with_actor_factory_default(hidden_sizes)
class _BuilderMixinCriticsFactory:
def __init__(self, num_critics: int):
self._critic_factories: list[CriticFactory | None] = [None] * num_critics
def _with_critic_factory(self, idx: int, critic_factory: CriticFactory):
self._critic_factories[idx] = critic_factory
return self
def _with_critic_factory_default(self, idx: int, hidden_sizes: Sequence[int]):
self._critic_factories[idx] = CriticFactoryDefault(hidden_sizes)
return self
def _get_critic_factory(self, idx: int):
factory = self._critic_factories[idx]
if factory is None:
return CriticFactoryDefault()
else:
return factory
class _BuilderMixinSingleCriticFactory(_BuilderMixinCriticsFactory):
def __init__(self):
super().__init__(1)
def with_critic_factory(self, critic_factory: CriticFactory) -> Self:
self._with_critic_factory(0, critic_factory)
return self
def with_critic_factory_default(
self,
hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
) -> Self:
self._with_critic_factory_default(0, hidden_sizes)
return self
class _BuilderMixinSingleCriticCanUseActorFactory(_BuilderMixinSingleCriticFactory):
def __init__(self):
super().__init__()
self._critic_use_actor_module = False
def with_critic_factory_use_actor(self) -> Self:
"""Makes the critic use the same network as the actor."""
self._critic_use_actor_module = True
return self
class _BuilderMixinDualCriticFactory(_BuilderMixinCriticsFactory):
def __init__(self):
super().__init__(2)
def with_common_critic_factory(self: TBuilder, critic_factory: CriticFactory) -> TBuilder:
self: TBuilder | "_BuilderMixinDualCriticFactory"
for i in range(len(self._critic_factories)):
self._with_critic_factory(i, critic_factory)
return self
def with_common_critic_factory_default(
self,
hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
) -> TBuilder:
self: TBuilder | "_BuilderMixinDualCriticFactory"
for i in range(len(self._critic_factories)):
self._with_critic_factory_default(i, hidden_sizes)
return self
def with_critic1_factory(self: TBuilder, critic_factory: CriticFactory) -> TBuilder:
self: TBuilder | "_BuilderMixinDualCriticFactory"
self._with_critic_factory(0, critic_factory)
return self
def with_critic1_factory_default(
self,
hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
) -> TBuilder:
self: TBuilder | "_BuilderMixinDualCriticFactory"
self._with_critic_factory_default(0, hidden_sizes)
return self
def with_critic2_factory(self: TBuilder, critic_factory: CriticFactory) -> TBuilder:
self: TBuilder | "_BuilderMixinDualCriticFactory"
self._with_critic_factory(1, critic_factory)
return self
def with_critic2_factory_default(
self,
hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
) -> TBuilder:
self: TBuilder | "_BuilderMixinDualCriticFactory"
self._with_critic_factory_default(0, hidden_sizes)
return self
class A2CExperimentBuilder(
RLExperimentBuilder,
_BuilderMixinActorFactory_ContinuousGaussian,
_BuilderMixinSingleCriticCanUseActorFactory,
):
def __init__(
self,
experiment_config: RLExperimentConfig,
env_factory: EnvFactory,
sampling_config: RLSamplingConfig,
env_config: PersistableConfigProtocol | None = None,
):
super().__init__(experiment_config, env_factory, sampling_config)
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
_BuilderMixinSingleCriticCanUseActorFactory.__init__(self)
self._params: A2CParams = A2CParams()
self._env_config = env_config
def with_a2c_params(self, params: A2CParams) -> Self:
self._params = params
return self
@abstractmethod
def _create_agent_factory(self) -> AgentFactory:
return A2CAgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_critic_factory(0),
self._get_optim_factory(),
self._critic_use_actor_module,
)
class PPOExperimentBuilder(
RLExperimentBuilder,
_BuilderMixinActorFactory_ContinuousGaussian,
_BuilderMixinSingleCriticCanUseActorFactory,
):
def __init__(
self,
experiment_config: RLExperimentConfig,
env_factory: EnvFactory,
sampling_config: RLSamplingConfig,
):
super().__init__(experiment_config, env_factory, sampling_config)
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
_BuilderMixinSingleCriticCanUseActorFactory.__init__(self)
self._params: PPOParams = PPOParams()
def with_ppo_params(self, params: PPOParams) -> Self:
self._params = params
return self
@abstractmethod
def _create_agent_factory(self) -> AgentFactory:
return PPOAgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_critic_factory(0),
self._get_optim_factory(),
self._critic_use_actor_module,
)
class DQNExperimentBuilder(
RLExperimentBuilder,
_BuilderMixinActorFactory,
):
def __init__(
self,
experiment_config: RLExperimentConfig,
env_factory: EnvFactory,
sampling_config: RLSamplingConfig,
):
super().__init__(experiment_config, env_factory, sampling_config)
_BuilderMixinActorFactory.__init__(self, ContinuousActorType.UNSUPPORTED)
self._params: DQNParams = DQNParams()
def with_dqn_params(self, params: DQNParams) -> Self:
self._params = params
return self
@abstractmethod
def _create_agent_factory(self) -> AgentFactory:
return DQNAgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_optim_factory(),
)
class DDPGExperimentBuilder(
RLExperimentBuilder,
_BuilderMixinActorFactory_ContinuousDeterministic,
_BuilderMixinSingleCriticCanUseActorFactory,
):
def __init__(
self,
experiment_config: RLExperimentConfig,
env_factory: EnvFactory,
sampling_config: RLSamplingConfig,
):
super().__init__(experiment_config, env_factory, sampling_config)
_BuilderMixinActorFactory_ContinuousDeterministic.__init__(self)
_BuilderMixinSingleCriticCanUseActorFactory.__init__(self)
self._params: DDPGParams = DDPGParams()
def with_ddpg_params(self, params: DDPGParams) -> Self:
self._params = params
return self
@abstractmethod
def _create_agent_factory(self) -> AgentFactory:
return DDPGAgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_critic_factory(0),
self._get_optim_factory(),
)
class SACExperimentBuilder(
RLExperimentBuilder,
_BuilderMixinActorFactory_ContinuousGaussian,
_BuilderMixinDualCriticFactory,
):
def __init__(
self,
experiment_config: RLExperimentConfig,
env_factory: EnvFactory,
sampling_config: RLSamplingConfig,
):
super().__init__(experiment_config, env_factory, sampling_config)
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
_BuilderMixinDualCriticFactory.__init__(self)
self._params: SACParams = SACParams()
def with_sac_params(self, params: SACParams) -> Self:
self._params = params
return self
def _create_agent_factory(self) -> AgentFactory:
return SACAgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_critic_factory(0),
self._get_critic_factory(1),
self._get_optim_factory(),
)
class TD3ExperimentBuilder(
RLExperimentBuilder,
_BuilderMixinActorFactory_ContinuousDeterministic,
_BuilderMixinDualCriticFactory,
):
def __init__(
self,
experiment_config: RLExperimentConfig,
env_factory: EnvFactory,
sampling_config: RLSamplingConfig,
):
super().__init__(experiment_config, env_factory, sampling_config)
_BuilderMixinActorFactory_ContinuousDeterministic.__init__(self)
_BuilderMixinDualCriticFactory.__init__(self)
self._params: TD3Params = TD3Params()
def with_td3_params(self, params: TD3Params) -> Self:
self._params = params
return self
def _create_agent_factory(self) -> AgentFactory:
return TD3AgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_critic_factory(0),
self._get_critic_factory(1),
self._get_optim_factory(),
)