80 lines
2.8 KiB
Python
80 lines
2.8 KiB
Python
import torch
|
|
import numpy as np
|
|
from torch import nn
|
|
|
|
|
|
class Actor(nn.Module):
|
|
def __init__(self, layer_num, state_shape, action_shape,
|
|
max_action, device='cpu'):
|
|
super().__init__()
|
|
self.device = device
|
|
self.model = [
|
|
nn.Linear(np.prod(state_shape), 128),
|
|
nn.ReLU(inplace=True)]
|
|
for i in range(layer_num):
|
|
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
|
|
self.model += [nn.Linear(128, np.prod(action_shape))]
|
|
self.model = nn.Sequential(*self.model)
|
|
self._max = max_action
|
|
|
|
def forward(self, s, **kwargs):
|
|
s = torch.tensor(s, device=self.device, dtype=torch.float)
|
|
batch = s.shape[0]
|
|
s = s.view(batch, -1)
|
|
logits = self.model(s)
|
|
logits = self._max * torch.tanh(logits)
|
|
return logits, None
|
|
|
|
|
|
class ActorProb(nn.Module):
|
|
def __init__(self, layer_num, state_shape, action_shape,
|
|
max_action, device='cpu'):
|
|
super().__init__()
|
|
self.device = device
|
|
self.model = [
|
|
nn.Linear(np.prod(state_shape), 128),
|
|
nn.ReLU(inplace=True)]
|
|
for i in range(layer_num):
|
|
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
|
|
self.model = nn.Sequential(*self.model)
|
|
self.mu = nn.Linear(128, np.prod(action_shape))
|
|
self.sigma = nn.Linear(128, np.prod(action_shape))
|
|
self._max = max_action
|
|
|
|
def forward(self, s, **kwargs):
|
|
if not isinstance(s, torch.Tensor):
|
|
s = torch.tensor(s, device=self.device, dtype=torch.float)
|
|
batch = s.shape[0]
|
|
s = s.view(batch, -1)
|
|
logits = self.model(s)
|
|
mu = self._max * torch.tanh(self.mu(logits))
|
|
sigma = torch.exp(self.sigma(logits))
|
|
return (mu, sigma), None
|
|
|
|
|
|
class Critic(nn.Module):
|
|
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu'):
|
|
super().__init__()
|
|
self.device = device
|
|
self.model = [
|
|
nn.Linear(np.prod(state_shape) + np.prod(action_shape), 128),
|
|
nn.ReLU(inplace=True)]
|
|
for i in range(layer_num):
|
|
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
|
|
self.model += [nn.Linear(128, 1)]
|
|
self.model = nn.Sequential(*self.model)
|
|
|
|
def forward(self, s, a=None):
|
|
if not isinstance(s, torch.Tensor):
|
|
s = torch.tensor(s, device=self.device, dtype=torch.float)
|
|
if a is not None and not isinstance(a, torch.Tensor):
|
|
a = torch.tensor(a, device=self.device, dtype=torch.float)
|
|
batch = s.shape[0]
|
|
s = s.view(batch, -1)
|
|
if a is None:
|
|
logits = self.model(s)
|
|
else:
|
|
a = a.view(batch, -1)
|
|
logits = self.model(torch.cat([s, a], dim=1))
|
|
return logits
|