87 lines
3.0 KiB
Python
Executable File
87 lines
3.0 KiB
Python
Executable File
#!/usr/bin/env python
|
|
from __future__ import absolute_import
|
|
|
|
import tensorflow as tf
|
|
import time
|
|
import numpy as np
|
|
import gym
|
|
|
|
# our lib imports here! It's ok to append path in examples
|
|
import sys
|
|
sys.path.append('..')
|
|
from tianshou.core import losses
|
|
from tianshou.data.batch import Batch
|
|
import tianshou.data.advantage_estimation as advantage_estimation
|
|
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
|
import tianshou.core.value_function.state_value as value_function
|
|
|
|
|
|
# for tutorial purpose, placeholders are explicitly appended with '_ph' suffix
|
|
|
|
if __name__ == '__main__':
|
|
env = gym.make('CartPole-v0')
|
|
observation_dim = env.observation_space.shape
|
|
action_dim = env.action_space.n
|
|
|
|
clip_param = 0.2
|
|
num_batches = 10
|
|
batch_size = 128
|
|
|
|
seed = 10
|
|
np.random.seed(seed)
|
|
tf.set_random_seed(seed)
|
|
|
|
### 1. build network with pure tf
|
|
observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim)
|
|
|
|
def my_network():
|
|
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
|
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
|
|
|
action_logits = tf.layers.dense(net, action_dim, activation=None)
|
|
|
|
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
|
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
|
value = tf.layers.dense(net, 1, activation=None)
|
|
|
|
return action_logits, value
|
|
|
|
### 2. build policy, critic, loss, optimizer
|
|
actor = policy.OnehotCategorical(my_network, observation_placeholder=observation_ph, weight_update=1)
|
|
critic = value_function.StateValue(my_network, observation_placeholder=observation_ph)
|
|
|
|
actor_loss = losses.REINFORCE(actor)
|
|
critic_loss = losses.value_mse(critic)
|
|
|
|
actor_optimizer = tf.train.AdamOptimizer(1e-4)
|
|
actor_train_op = actor_optimizer.minimize(actor_loss, var_list=actor.trainable_variables)
|
|
|
|
critic_optimizer = tf.train.RMSPropOptimizer(1e-4)
|
|
critic_train_op = critic_optimizer.minimize(critic_loss, var_list=critic.trainable_variables)
|
|
|
|
### 3. define data collection
|
|
data_collector = Batch(env, actor,
|
|
[advantage_estimation.gae_lambda(1, critic), advantage_estimation.nstep_return(1, critic)],
|
|
[actor, critic])
|
|
|
|
### 4. start training
|
|
config = tf.ConfigProto()
|
|
config.gpu_options.allow_growth = True
|
|
with tf.Session(config=config) as sess:
|
|
sess.run(tf.global_variables_initializer())
|
|
|
|
start_time = time.time()
|
|
for i in range(100):
|
|
# collect data
|
|
data_collector.collect(num_episodes=20)
|
|
|
|
# print current return
|
|
print('Epoch {}:'.format(i))
|
|
data_collector.statistics()
|
|
|
|
# update network
|
|
for _ in range(num_batches):
|
|
feed_dict = data_collector.next_batch(batch_size)
|
|
sess.run([actor_train_op, critic_train_op], feed_dict=feed_dict)
|
|
|
|
print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60)) |