1. add policy.eval() in all test scripts' "watch performance" 2. remove dict return support for collector preprocess_fn 3. add `__contains__` and `pop` in batch: `key in batch`, `batch.pop(key, deft)` 4. exact n_episode for a list of n_episode limitation and save fake data in cache_buffer when self.buffer is None (#184) 5. fix tensorboard logging: h-axis stands for env step instead of gradient step; add test results into tensorboard 6. add test_returns (both GAE and nstep) 7. change the type-checking order in batch.py and converter.py in order to meet the most often case first 8. fix shape inconsistency for torch.Tensor in replay buffer 9. remove `**kwargs` in ReplayBuffer 10. remove default value in batch.split() and add merge_last argument (#185) 11. improve nstep efficiency 12. add max_batchsize in onpolicy algorithms 13. potential bugfix for subproc.wait 14. fix RecurrentActorProb 15. improve the code-coverage (from 90% to 95%) and remove the dead code 16. fix some incorrect type annotation The above improvement also increases the training FPS: on my computer, the previous version is only ~1800 FPS and after that, it can reach ~2050 (faster than v0.2.4.post1).
		
			
				
	
	
		
			111 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import gym
 | 
						|
import torch
 | 
						|
import pprint
 | 
						|
import argparse
 | 
						|
import numpy as np
 | 
						|
from torch.utils.tensorboard import SummaryWriter
 | 
						|
 | 
						|
from tianshou.policy import TD3Policy
 | 
						|
from tianshou.trainer import offpolicy_trainer
 | 
						|
from tianshou.data import Collector, ReplayBuffer
 | 
						|
from tianshou.env import SubprocVectorEnv
 | 
						|
from tianshou.exploration import GaussianNoise
 | 
						|
from tianshou.utils.net.common import Net
 | 
						|
from tianshou.utils.net.continuous import Actor, Critic
 | 
						|
 | 
						|
 | 
						|
def get_args():
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument('--task', type=str, default='Ant-v2')
 | 
						|
    parser.add_argument('--seed', type=int, default=1626)
 | 
						|
    parser.add_argument('--buffer-size', type=int, default=20000)
 | 
						|
    parser.add_argument('--actor-lr', type=float, default=3e-4)
 | 
						|
    parser.add_argument('--critic-lr', type=float, default=1e-3)
 | 
						|
    parser.add_argument('--gamma', type=float, default=0.99)
 | 
						|
    parser.add_argument('--tau', type=float, default=0.005)
 | 
						|
    parser.add_argument('--exploration-noise', type=float, default=0.1)
 | 
						|
    parser.add_argument('--policy-noise', type=float, default=0.2)
 | 
						|
    parser.add_argument('--noise-clip', type=float, default=0.5)
 | 
						|
    parser.add_argument('--update-actor-freq', type=int, default=2)
 | 
						|
    parser.add_argument('--epoch', type=int, default=100)
 | 
						|
    parser.add_argument('--step-per-epoch', type=int, default=2400)
 | 
						|
    parser.add_argument('--collect-per-step', type=int, default=10)
 | 
						|
    parser.add_argument('--batch-size', type=int, default=128)
 | 
						|
    parser.add_argument('--layer-num', type=int, default=1)
 | 
						|
    parser.add_argument('--training-num', type=int, default=8)
 | 
						|
    parser.add_argument('--test-num', type=int, default=100)
 | 
						|
    parser.add_argument('--logdir', type=str, default='log')
 | 
						|
    parser.add_argument('--render', type=float, default=0.)
 | 
						|
    parser.add_argument(
 | 
						|
        '--device', type=str,
 | 
						|
        default='cuda' if torch.cuda.is_available() else 'cpu')
 | 
						|
    return parser.parse_args()
 | 
						|
 | 
						|
 | 
						|
def test_td3(args=get_args()):
 | 
						|
    env = gym.make(args.task)
 | 
						|
    args.state_shape = env.observation_space.shape or env.observation_space.n
 | 
						|
    args.action_shape = env.action_space.shape or env.action_space.n
 | 
						|
    args.max_action = env.action_space.high[0]
 | 
						|
    # train_envs = gym.make(args.task)
 | 
						|
    train_envs = SubprocVectorEnv(
 | 
						|
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
 | 
						|
    # test_envs = gym.make(args.task)
 | 
						|
    test_envs = SubprocVectorEnv(
 | 
						|
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
 | 
						|
    # seed
 | 
						|
    np.random.seed(args.seed)
 | 
						|
    torch.manual_seed(args.seed)
 | 
						|
    train_envs.seed(args.seed)
 | 
						|
    test_envs.seed(args.seed)
 | 
						|
    # model
 | 
						|
    net = Net(args.layer_num, args.state_shape, device=args.device)
 | 
						|
    actor = Actor(
 | 
						|
        net, args.action_shape,
 | 
						|
        args.max_action, args.device
 | 
						|
    ).to(args.device)
 | 
						|
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
 | 
						|
    net = Net(args.layer_num, args.state_shape,
 | 
						|
              args.action_shape, concat=True, device=args.device)
 | 
						|
    critic1 = Critic(net, args.device).to(args.device)
 | 
						|
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
 | 
						|
    critic2 = Critic(net, args.device).to(args.device)
 | 
						|
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
 | 
						|
    policy = TD3Policy(
 | 
						|
        actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
 | 
						|
        args.tau, args.gamma,
 | 
						|
        GaussianNoise(sigma=args.exploration_noise), args.policy_noise,
 | 
						|
        args.update_actor_freq, args.noise_clip,
 | 
						|
        [env.action_space.low[0], env.action_space.high[0]],
 | 
						|
        reward_normalization=True, ignore_done=True)
 | 
						|
    # collector
 | 
						|
    train_collector = Collector(
 | 
						|
        policy, train_envs, ReplayBuffer(args.buffer_size))
 | 
						|
    test_collector = Collector(policy, test_envs)
 | 
						|
    # train_collector.collect(n_step=args.buffer_size)
 | 
						|
    # log
 | 
						|
    writer = SummaryWriter(args.logdir + '/' + 'td3')
 | 
						|
 | 
						|
    def stop_fn(x):
 | 
						|
        return x >= env.spec.reward_threshold
 | 
						|
 | 
						|
    # trainer
 | 
						|
    result = offpolicy_trainer(
 | 
						|
        policy, train_collector, test_collector, args.epoch,
 | 
						|
        args.step_per_epoch, args.collect_per_step, args.test_num,
 | 
						|
        args.batch_size, stop_fn=stop_fn, writer=writer)
 | 
						|
    assert stop_fn(result['best_reward'])
 | 
						|
    if __name__ == '__main__':
 | 
						|
        pprint.pprint(result)
 | 
						|
        # Let's watch its performance!
 | 
						|
        policy.eval()
 | 
						|
        test_envs.seed(args.seed)
 | 
						|
        test_collector.reset()
 | 
						|
        result = test_collector.collect(n_episode=[1] * args.test_num,
 | 
						|
                                        render=args.render)
 | 
						|
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    test_td3()
 |