Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
148 lines
5.4 KiB
Python
148 lines
5.4 KiB
Python
import argparse
|
|
import os
|
|
import pprint
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import DQNPolicy
|
|
from tianshou.trainer import OffpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import Net
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="Acrobot-v1")
|
|
parser.add_argument("--seed", type=int, default=0)
|
|
parser.add_argument("--eps-test", type=float, default=0.05)
|
|
parser.add_argument("--eps-train", type=float, default=0.5)
|
|
parser.add_argument("--buffer-size", type=int, default=20000)
|
|
parser.add_argument("--lr", type=float, default=1e-3)
|
|
parser.add_argument("--gamma", type=float, default=0.95)
|
|
parser.add_argument("--n-step", type=int, default=3)
|
|
parser.add_argument("--target-update-freq", type=int, default=320)
|
|
parser.add_argument("--epoch", type=int, default=10)
|
|
parser.add_argument("--step-per-epoch", type=int, default=100000)
|
|
parser.add_argument("--step-per-collect", type=int, default=100)
|
|
parser.add_argument("--update-per-step", type=float, default=0.01)
|
|
parser.add_argument("--batch-size", type=int, default=64)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128])
|
|
parser.add_argument("--dueling-q-hidden-sizes", type=int, nargs="*", default=[128, 128])
|
|
parser.add_argument("--dueling-v-hidden-sizes", type=int, nargs="*", default=[128, 128])
|
|
parser.add_argument("--training-num", type=int, default=10)
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
return parser.parse_args()
|
|
|
|
|
|
def test_dqn(args=get_args()):
|
|
env = gym.make(args.task)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
# train_envs = gym.make(args.task)
|
|
# you can also use tianshou.env.SubprocVectorEnv
|
|
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# model
|
|
Q_param = {"hidden_sizes": args.dueling_q_hidden_sizes}
|
|
V_param = {"hidden_sizes": args.dueling_v_hidden_sizes}
|
|
net = Net(
|
|
args.state_shape,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
device=args.device,
|
|
dueling_param=(Q_param, V_param),
|
|
).to(args.device)
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
|
|
policy = DQNPolicy(
|
|
model=net,
|
|
optim=optim,
|
|
action_space=env.action_space,
|
|
discount_factor=args.gamma,
|
|
estimation_step=args.n_step,
|
|
target_update_freq=args.target_update_freq,
|
|
)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
exploration_noise=True,
|
|
)
|
|
test_collector = Collector(policy, test_envs, exploration_noise=True)
|
|
# policy.set_eps(1)
|
|
train_collector.collect(n_step=args.batch_size * args.training_num)
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, "dqn")
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards):
|
|
return mean_rewards >= env.spec.reward_threshold
|
|
|
|
def train_fn(epoch, env_step):
|
|
if env_step <= 100000:
|
|
policy.set_eps(args.eps_train)
|
|
elif env_step <= 500000:
|
|
eps = args.eps_train - (env_step - 100000) / 400000 * (0.5 * args.eps_train)
|
|
policy.set_eps(eps)
|
|
else:
|
|
policy.set_eps(0.5 * args.eps_train)
|
|
|
|
def test_fn(epoch, env_step):
|
|
policy.set_eps(args.eps_test)
|
|
|
|
# trainer
|
|
result = OffpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
update_per_step=args.update_per_step,
|
|
train_fn=train_fn,
|
|
test_fn=test_fn,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
|
|
assert stop_fn(result["best_reward"])
|
|
if __name__ == "__main__":
|
|
pprint.pprint(result)
|
|
# Let's watch its performance!
|
|
policy.eval()
|
|
policy.set_eps(args.eps_test)
|
|
test_envs.seed(args.seed)
|
|
test_collector.reset()
|
|
result = test_collector.collect(n_episode=args.test_num, render=args.render)
|
|
rews, lens = result["rews"], result["lens"]
|
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_dqn(get_args())
|