Tianshou/test/discrete/test_a2c_with_il.py
Michael Panchenko b900fdf6f2
Remove kwargs in policy init (#950)
Closes #947 

This removes all kwargs from all policy constructors. While doing that,
I also improved several names and added a whole lot of TODOs.

## Functional changes:

1. Added possibility to pass None as `critic2` and `critic2_optim`. In
fact, the default behavior then should cover the absolute majority of
cases
2. Added a function called `clone_optimizer` as a temporary measure to
support passing `critic2_optim=None`

## Breaking changes:

1. `action_space` is no longer optional. In fact, it already was
non-optional, as there was a ValueError in BasePolicy.init. So now
several examples were fixed to reflect that
2. `reward_normalization` removed from DDPG and children. It was never
allowed to pass it as `True` there, an error would have been raised in
`compute_n_step_reward`. Now I removed it from the interface
3. renamed `critic1` and similar to `critic`, in order to have uniform
interfaces. Note that the `critic` in DDPG was optional for the sole
reason that child classes used `critic1`. I removed this optionality
(DDPG can't do anything with `critic=None`)
4. Several renamings of fields (mostly private to public, so backwards
compatible)

## Additional changes: 
1. Removed type and default declaration from docstring. This kind of
duplication is really not necessary
2. Policy constructors are now only called using named arguments, not a
fragile mixture of positional and named as before
5. Minor beautifications in typing and code 
6. Generally shortened docstrings and made them uniform across all
policies (hopefully)

## Comment:

With these changes, several problems in tianshou's inheritance hierarchy
become more apparent. I tried highlighting them for future work.

---------

Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 08:57:03 -07:00

191 lines
7.2 KiB
Python

import argparse
import os
import pprint
import gymnasium as gym
import numpy as np
import pytest
import torch
from gymnasium.spaces import Box
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import A2CPolicy, ImitationPolicy
from tianshou.trainer import OffpolicyTrainer, OnpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import ActorCritic, Net
from tianshou.utils.net.discrete import Actor, Critic
try:
import envpool
except ImportError:
envpool = None
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v0")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--il-lr", type=float, default=1e-3)
parser.add_argument("--gamma", type=float, default=0.9)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=50000)
parser.add_argument("--il-step-per-epoch", type=int, default=1000)
parser.add_argument("--episode-per-collect", type=int, default=16)
parser.add_argument("--step-per-collect", type=int, default=16)
parser.add_argument("--update-per-step", type=float, default=1 / 16)
parser.add_argument("--repeat-per-collect", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--imitation-hidden-sizes", type=int, nargs="*", default=[128])
parser.add_argument("--training-num", type=int, default=16)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
# a2c special
parser.add_argument("--vf-coef", type=float, default=0.5)
parser.add_argument("--ent-coef", type=float, default=0.0)
parser.add_argument("--max-grad-norm", type=float, default=None)
parser.add_argument("--gae-lambda", type=float, default=1.0)
parser.add_argument("--rew-norm", action="store_true", default=False)
return parser.parse_known_args()[0]
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
def test_a2c_with_il(args=get_args()):
# if you want to use python vector env, please refer to other test scripts
train_envs = env = envpool.make(
args.task,
env_type="gymnasium",
num_envs=args.training_num,
seed=args.seed,
)
test_envs = envpool.make(
args.task,
env_type="gymnasium",
num_envs=args.test_num,
seed=args.seed,
)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v0": 195}
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(), lr=args.lr)
dist = torch.distributions.Categorical
policy = A2CPolicy(
actor=actor,
critic=critic,
optim=optim,
dist_fn=dist,
action_scaling=isinstance(env.action_space, Box),
discount_factor=args.gamma,
gae_lambda=args.gae_lambda,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
max_grad_norm=args.max_grad_norm,
reward_normalization=args.rew_norm,
action_space=env.action_space,
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
)
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, "a2c")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards):
return mean_rewards >= args.reward_threshold
# trainer
result = OnpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
repeat_per_collect=args.repeat_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
episode_per_collect=args.episode_per_collect,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
assert stop_fn(result["best_reward"])
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
policy.eval()
# here we define an imitation collector with a trivial policy
# if args.task == 'CartPole-v0':
# env.spec.reward_threshold = 190 # lower the goal
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
net = Actor(net, args.action_shape, device=args.device).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
il_policy = ImitationPolicy(actor=net, optim=optim, action_space=env.action_space)
il_test_collector = Collector(
il_policy,
envpool.make(args.task, env_type="gymnasium", num_envs=args.test_num, seed=args.seed),
)
train_collector.reset()
result = OffpolicyTrainer(
policy=il_policy,
train_collector=train_collector,
test_collector=il_test_collector,
max_epoch=args.epoch,
step_per_epoch=args.il_step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
assert stop_fn(result["best_reward"])
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
il_policy.eval()
collector = Collector(il_policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == "__main__":
test_a2c_with_il()