Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
134 lines
5.0 KiB
Python
134 lines
5.0 KiB
Python
import argparse
|
|
import os
|
|
import pprint
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.policy import PSRLPolicy
|
|
from tianshou.trainer import OnpolicyTrainer
|
|
from tianshou.utils import LazyLogger, TensorboardLogger, WandbLogger
|
|
|
|
try:
|
|
import envpool
|
|
except ImportError:
|
|
envpool = None
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="NChain-v0")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=1)
|
|
parser.add_argument("--buffer-size", type=int, default=50000)
|
|
parser.add_argument("--epoch", type=int, default=5)
|
|
parser.add_argument("--step-per-epoch", type=int, default=1000)
|
|
parser.add_argument("--episode-per-collect", type=int, default=1)
|
|
parser.add_argument("--training-num", type=int, default=1)
|
|
parser.add_argument("--test-num", type=int, default=10)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument("--rew-mean-prior", type=float, default=0.0)
|
|
parser.add_argument("--rew-std-prior", type=float, default=1.0)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
parser.add_argument("--eps", type=float, default=0.01)
|
|
parser.add_argument("--add-done-loop", action="store_true", default=False)
|
|
parser.add_argument(
|
|
"--logger",
|
|
type=str,
|
|
default="none", # TODO: Change to "wandb" once wandb supports Gym >=0.26.0
|
|
choices=["wandb", "tensorboard", "none"],
|
|
)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
|
|
def test_psrl(args=get_args()):
|
|
# if you want to use python vector env, please refer to other test scripts
|
|
train_envs = env = envpool.make_gymnasium(args.task, num_envs=args.training_num, seed=args.seed)
|
|
test_envs = envpool.make_gymnasium(args.task, num_envs=args.test_num, seed=args.seed)
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"NChain-v0": 3400}
|
|
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
|
|
print("reward threshold:", args.reward_threshold)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
# model
|
|
n_action = args.action_shape
|
|
n_state = args.state_shape
|
|
trans_count_prior = np.ones((n_state, n_action, n_state))
|
|
rew_mean_prior = np.full((n_state, n_action), args.rew_mean_prior)
|
|
rew_std_prior = np.full((n_state, n_action), args.rew_std_prior)
|
|
policy = PSRLPolicy(
|
|
trans_count_prior=trans_count_prior,
|
|
rew_mean_prior=rew_mean_prior,
|
|
rew_std_prior=rew_std_prior,
|
|
action_space=env.action_space,
|
|
discount_factor=args.gamma,
|
|
epsilon=args.eps,
|
|
add_done_loop=args.add_done_loop,
|
|
)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
exploration_noise=True,
|
|
)
|
|
test_collector = Collector(policy, test_envs)
|
|
# Logger
|
|
if args.logger == "wandb":
|
|
logger = WandbLogger(save_interval=1, project="psrl", name="wandb_test", config=args)
|
|
if args.logger != "none":
|
|
log_path = os.path.join(args.logdir, args.task, "psrl")
|
|
writer = SummaryWriter(log_path)
|
|
writer.add_text("args", str(args))
|
|
if args.logger == "tensorboard":
|
|
logger = TensorboardLogger(writer)
|
|
else:
|
|
logger.load(writer)
|
|
else:
|
|
logger = LazyLogger()
|
|
|
|
def stop_fn(mean_rewards):
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
train_collector.collect(n_step=args.buffer_size, random=True)
|
|
# trainer, test it without logger
|
|
result = OnpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
repeat_per_collect=1,
|
|
episode_per_test=args.test_num,
|
|
batch_size=0,
|
|
episode_per_collect=args.episode_per_collect,
|
|
stop_fn=stop_fn,
|
|
logger=logger,
|
|
test_in_train=False,
|
|
).run()
|
|
|
|
if __name__ == "__main__":
|
|
pprint.pprint(result)
|
|
# Let's watch its performance!
|
|
policy.eval()
|
|
test_envs.seed(args.seed)
|
|
test_collector.reset()
|
|
result = test_collector.collect(n_episode=args.test_num, render=args.render)
|
|
rews, lens = result["rews"], result["lens"]
|
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
|
elif env.spec.reward_threshold:
|
|
assert result["best_reward"] >= env.spec.reward_threshold
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_psrl()
|