Closes #914 Additional changes: - Deprecate python below 11 - Remove 3rd party and throughput tests. This simplifies install and test pipeline - Remove gym compatibility and shimmy - Format with 3.11 conventions. In particular, add `zip(..., strict=True/False)` where possible Since the additional tests and gym were complicating the CI pipeline (flaky and dist-dependent), it didn't make sense to work on fixing the current tests in this PR to then just delete them in the next one. So this PR changes the build and removes these tests at the same time.
320 lines
12 KiB
Python
320 lines
12 KiB
Python
from collections.abc import Sequence
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
from numba import njit
|
|
|
|
from tianshou.data import Batch, HERReplayBuffer, PrioritizedReplayBuffer, ReplayBuffer
|
|
from tianshou.data.batch import alloc_by_keys_diff, create_value
|
|
from tianshou.data.types import RolloutBatchProtocol
|
|
|
|
|
|
class ReplayBufferManager(ReplayBuffer):
|
|
"""ReplayBufferManager contains a list of ReplayBuffer with exactly the same configuration.
|
|
|
|
These replay buffers have contiguous memory layout, and the storage space each
|
|
buffer has is a shallow copy of the topmost memory.
|
|
|
|
:param buffer_list: a list of ReplayBuffer needed to be handled.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
|
|
"""
|
|
|
|
def __init__(self, buffer_list: list[ReplayBuffer] | list[HERReplayBuffer]) -> None:
|
|
self.buffer_num = len(buffer_list)
|
|
self.buffers = np.array(buffer_list, dtype=object)
|
|
offset, size = [], 0
|
|
buffer_type = type(self.buffers[0])
|
|
kwargs = self.buffers[0].options
|
|
for buf in self.buffers:
|
|
assert buf._meta.is_empty()
|
|
assert isinstance(buf, buffer_type)
|
|
assert buf.options == kwargs
|
|
offset.append(size)
|
|
size += buf.maxsize
|
|
self._offset = np.array(offset)
|
|
self._extend_offset = np.array([*offset, size])
|
|
self._lengths = np.zeros_like(offset)
|
|
super().__init__(size=size, **kwargs)
|
|
self._compile()
|
|
self._meta: RolloutBatchProtocol
|
|
|
|
def _compile(self) -> None:
|
|
lens = last = index = np.array([0])
|
|
offset = np.array([0, 1])
|
|
done = np.array([False, False])
|
|
_prev_index(index, offset, done, last, lens)
|
|
_next_index(index, offset, done, last, lens)
|
|
|
|
def __len__(self) -> int:
|
|
return int(self._lengths.sum())
|
|
|
|
def reset(self, keep_statistics: bool = False) -> None:
|
|
self.last_index = self._offset.copy()
|
|
self._lengths = np.zeros_like(self._offset)
|
|
for buf in self.buffers:
|
|
buf.reset(keep_statistics=keep_statistics)
|
|
|
|
def _set_batch_for_children(self) -> None:
|
|
for offset, buf in zip(self._offset, self.buffers, strict=True):
|
|
buf.set_batch(self._meta[offset : offset + buf.maxsize])
|
|
|
|
def set_batch(self, batch: RolloutBatchProtocol) -> None:
|
|
super().set_batch(batch)
|
|
self._set_batch_for_children()
|
|
|
|
def unfinished_index(self) -> np.ndarray:
|
|
return np.concatenate(
|
|
[
|
|
buf.unfinished_index() + offset
|
|
for offset, buf in zip(self._offset, self.buffers, strict=True)
|
|
],
|
|
)
|
|
|
|
def prev(self, index: int | np.ndarray) -> np.ndarray:
|
|
if isinstance(index, list | np.ndarray):
|
|
return _prev_index(
|
|
np.asarray(index),
|
|
self._extend_offset,
|
|
self.done,
|
|
self.last_index,
|
|
self._lengths,
|
|
)
|
|
return _prev_index(
|
|
np.array([index]),
|
|
self._extend_offset,
|
|
self.done,
|
|
self.last_index,
|
|
self._lengths,
|
|
)[0]
|
|
|
|
def next(self, index: int | np.ndarray) -> np.ndarray:
|
|
if isinstance(index, list | np.ndarray):
|
|
return _next_index(
|
|
np.asarray(index),
|
|
self._extend_offset,
|
|
self.done,
|
|
self.last_index,
|
|
self._lengths,
|
|
)
|
|
return _next_index(
|
|
np.array([index]),
|
|
self._extend_offset,
|
|
self.done,
|
|
self.last_index,
|
|
self._lengths,
|
|
)[0]
|
|
|
|
def update(self, buffer: ReplayBuffer) -> np.ndarray:
|
|
"""The ReplayBufferManager cannot be updated by any buffer."""
|
|
raise NotImplementedError
|
|
|
|
def add(
|
|
self,
|
|
batch: RolloutBatchProtocol,
|
|
buffer_ids: np.ndarray | list[int] | None = None,
|
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
|
"""Add a batch of data into ReplayBufferManager.
|
|
|
|
Each of the data's length (first dimension) must equal to the length of
|
|
buffer_ids. By default buffer_ids is [0, 1, ..., buffer_num - 1].
|
|
|
|
Return (current_index, episode_reward, episode_length, episode_start_index). If
|
|
the episode is not finished, the return value of episode_length and
|
|
episode_reward is 0.
|
|
"""
|
|
# preprocess batch
|
|
new_batch = Batch()
|
|
for key in set(self._reserved_keys).intersection(batch.keys()):
|
|
new_batch.__dict__[key] = batch[key]
|
|
batch = new_batch
|
|
batch.__dict__["done"] = np.logical_or(batch.terminated, batch.truncated)
|
|
assert {"obs", "act", "rew", "terminated", "truncated", "done"}.issubset(batch.keys())
|
|
if self._save_only_last_obs:
|
|
batch.obs = batch.obs[:, -1]
|
|
if not self._save_obs_next:
|
|
batch.pop("obs_next", None)
|
|
elif self._save_only_last_obs:
|
|
batch.obs_next = batch.obs_next[:, -1]
|
|
# get index
|
|
if buffer_ids is None:
|
|
buffer_ids = np.arange(self.buffer_num)
|
|
ptrs, ep_lens, ep_rews, ep_idxs = [], [], [], []
|
|
for batch_idx, buffer_id in enumerate(buffer_ids):
|
|
ptr, ep_rew, ep_len, ep_idx = self.buffers[buffer_id]._add_index(
|
|
batch.rew[batch_idx],
|
|
batch.done[batch_idx],
|
|
)
|
|
ptrs.append(ptr + self._offset[buffer_id])
|
|
ep_lens.append(ep_len)
|
|
ep_rews.append(ep_rew)
|
|
ep_idxs.append(ep_idx + self._offset[buffer_id])
|
|
self.last_index[buffer_id] = ptr + self._offset[buffer_id]
|
|
self._lengths[buffer_id] = len(self.buffers[buffer_id])
|
|
ptrs = np.array(ptrs)
|
|
try:
|
|
self._meta[ptrs] = batch
|
|
except ValueError:
|
|
batch.rew = batch.rew.astype(float)
|
|
batch.done = batch.done.astype(bool)
|
|
batch.terminated = batch.terminated.astype(bool)
|
|
batch.truncated = batch.truncated.astype(bool)
|
|
if self._meta.is_empty():
|
|
self._meta = create_value(batch, self.maxsize, stack=False) # type: ignore
|
|
else: # dynamic key pops up in batch
|
|
alloc_by_keys_diff(self._meta, batch, self.maxsize, False)
|
|
self._set_batch_for_children()
|
|
self._meta[ptrs] = batch
|
|
return ptrs, np.array(ep_rews), np.array(ep_lens), np.array(ep_idxs)
|
|
|
|
def sample_indices(self, batch_size: int) -> np.ndarray:
|
|
if batch_size < 0:
|
|
return np.array([], int)
|
|
if self._sample_avail and self.stack_num > 1:
|
|
all_indices = np.concatenate(
|
|
[
|
|
buf.sample_indices(0) + offset
|
|
for offset, buf in zip(self._offset, self.buffers, strict=True)
|
|
],
|
|
)
|
|
if batch_size == 0:
|
|
return all_indices
|
|
return np.random.choice(all_indices, batch_size)
|
|
if batch_size == 0: # get all available indices
|
|
sample_num = np.zeros(self.buffer_num, int)
|
|
else:
|
|
buffer_idx = np.random.choice(
|
|
self.buffer_num,
|
|
batch_size,
|
|
p=self._lengths / self._lengths.sum(),
|
|
)
|
|
sample_num = np.bincount(buffer_idx, minlength=self.buffer_num)
|
|
# avoid batch_size > 0 and sample_num == 0 -> get child's all data
|
|
sample_num[sample_num == 0] = -1
|
|
|
|
return np.concatenate(
|
|
[
|
|
buf.sample_indices(bsz) + offset
|
|
for offset, buf, bsz in zip(self._offset, self.buffers, sample_num, strict=True)
|
|
],
|
|
)
|
|
|
|
|
|
class PrioritizedReplayBufferManager(PrioritizedReplayBuffer, ReplayBufferManager):
|
|
"""PrioritizedReplayBufferManager contains a list of PrioritizedReplayBuffer with exactly the same configuration.
|
|
|
|
These replay buffers have contiguous memory layout, and the storage space each
|
|
buffer has is a shallow copy of the topmost memory.
|
|
|
|
:param buffer_list: a list of PrioritizedReplayBuffer needed to be handled.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
|
|
"""
|
|
|
|
def __init__(self, buffer_list: Sequence[PrioritizedReplayBuffer]) -> None:
|
|
ReplayBufferManager.__init__(self, buffer_list) # type: ignore
|
|
kwargs = buffer_list[0].options
|
|
for buf in buffer_list:
|
|
del buf.weight
|
|
PrioritizedReplayBuffer.__init__(self, self.maxsize, **kwargs)
|
|
|
|
|
|
class HERReplayBufferManager(ReplayBufferManager):
|
|
"""HERReplayBufferManager contains a list of HERReplayBuffer with exactly the same configuration.
|
|
|
|
These replay buffers have contiguous memory layout, and the storage space each
|
|
buffer has is a shallow copy of the topmost memory.
|
|
|
|
:param buffer_list: a list of HERReplayBuffer needed to be handled.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
|
|
"""
|
|
|
|
def __init__(self, buffer_list: list[HERReplayBuffer]) -> None:
|
|
super().__init__(buffer_list)
|
|
|
|
def _restore_cache(self) -> None:
|
|
for buf in self.buffers:
|
|
buf._restore_cache()
|
|
|
|
def save_hdf5(self, path: str, compression: str | None = None) -> None:
|
|
self._restore_cache()
|
|
return super().save_hdf5(path, compression)
|
|
|
|
def set_batch(self, batch: RolloutBatchProtocol) -> None:
|
|
self._restore_cache()
|
|
return super().set_batch(batch)
|
|
|
|
def update(self, buffer: Union["HERReplayBuffer", "ReplayBuffer"]) -> np.ndarray:
|
|
self._restore_cache()
|
|
return super().update(buffer)
|
|
|
|
def add(
|
|
self,
|
|
batch: RolloutBatchProtocol,
|
|
buffer_ids: np.ndarray | list[int] | None = None,
|
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
|
self._restore_cache()
|
|
return super().add(batch, buffer_ids)
|
|
|
|
|
|
@njit
|
|
def _prev_index(
|
|
index: np.ndarray,
|
|
offset: np.ndarray,
|
|
done: np.ndarray,
|
|
last_index: np.ndarray,
|
|
lengths: np.ndarray,
|
|
) -> np.ndarray:
|
|
index = index % offset[-1]
|
|
prev_index = np.zeros_like(index)
|
|
# disable B905 until strict=True in zip is implemented in numba
|
|
# https://github.com/numba/numba/issues/8943
|
|
for start, end, cur_len, last in zip( # noqa: B905
|
|
offset[:-1],
|
|
offset[1:],
|
|
lengths,
|
|
last_index,
|
|
):
|
|
mask = (start <= index) & (index < end)
|
|
correct_cur_len = max(1, cur_len)
|
|
if np.sum(mask) > 0:
|
|
subind = index[mask]
|
|
subind = (subind - start - 1) % correct_cur_len
|
|
end_flag = done[subind + start] | (subind + start == last)
|
|
prev_index[mask] = (subind + end_flag) % correct_cur_len + start
|
|
return prev_index
|
|
|
|
|
|
@njit
|
|
def _next_index(
|
|
index: np.ndarray,
|
|
offset: np.ndarray,
|
|
done: np.ndarray,
|
|
last_index: np.ndarray,
|
|
lengths: np.ndarray,
|
|
) -> np.ndarray:
|
|
index = index % offset[-1]
|
|
next_index = np.zeros_like(index)
|
|
# disable B905 until strict=True in zip is implemented in numba
|
|
# https://github.com/numba/numba/issues/8943
|
|
for start, end, cur_len, last in zip( # noqa: B905
|
|
offset[:-1],
|
|
offset[1:],
|
|
lengths,
|
|
last_index,
|
|
):
|
|
mask = (start <= index) & (index < end)
|
|
correct_cur_len = max(1, cur_len)
|
|
if np.sum(mask) > 0:
|
|
subind = index[mask]
|
|
end_flag = done[subind] | (subind == last)
|
|
next_index[mask] = (subind - start + 1 - end_flag) % correct_cur_len + start
|
|
return next_index
|