Michael Panchenko 2cc34fb72b
Poetry install, remove gym, bump python (#925)
Closes #914 

Additional changes:

- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible

Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
2023-09-05 14:34:23 -07:00

320 lines
12 KiB
Python

from collections.abc import Sequence
from typing import Union
import numpy as np
from numba import njit
from tianshou.data import Batch, HERReplayBuffer, PrioritizedReplayBuffer, ReplayBuffer
from tianshou.data.batch import alloc_by_keys_diff, create_value
from tianshou.data.types import RolloutBatchProtocol
class ReplayBufferManager(ReplayBuffer):
"""ReplayBufferManager contains a list of ReplayBuffer with exactly the same configuration.
These replay buffers have contiguous memory layout, and the storage space each
buffer has is a shallow copy of the topmost memory.
:param buffer_list: a list of ReplayBuffer needed to be handled.
.. seealso::
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
"""
def __init__(self, buffer_list: list[ReplayBuffer] | list[HERReplayBuffer]) -> None:
self.buffer_num = len(buffer_list)
self.buffers = np.array(buffer_list, dtype=object)
offset, size = [], 0
buffer_type = type(self.buffers[0])
kwargs = self.buffers[0].options
for buf in self.buffers:
assert buf._meta.is_empty()
assert isinstance(buf, buffer_type)
assert buf.options == kwargs
offset.append(size)
size += buf.maxsize
self._offset = np.array(offset)
self._extend_offset = np.array([*offset, size])
self._lengths = np.zeros_like(offset)
super().__init__(size=size, **kwargs)
self._compile()
self._meta: RolloutBatchProtocol
def _compile(self) -> None:
lens = last = index = np.array([0])
offset = np.array([0, 1])
done = np.array([False, False])
_prev_index(index, offset, done, last, lens)
_next_index(index, offset, done, last, lens)
def __len__(self) -> int:
return int(self._lengths.sum())
def reset(self, keep_statistics: bool = False) -> None:
self.last_index = self._offset.copy()
self._lengths = np.zeros_like(self._offset)
for buf in self.buffers:
buf.reset(keep_statistics=keep_statistics)
def _set_batch_for_children(self) -> None:
for offset, buf in zip(self._offset, self.buffers, strict=True):
buf.set_batch(self._meta[offset : offset + buf.maxsize])
def set_batch(self, batch: RolloutBatchProtocol) -> None:
super().set_batch(batch)
self._set_batch_for_children()
def unfinished_index(self) -> np.ndarray:
return np.concatenate(
[
buf.unfinished_index() + offset
for offset, buf in zip(self._offset, self.buffers, strict=True)
],
)
def prev(self, index: int | np.ndarray) -> np.ndarray:
if isinstance(index, list | np.ndarray):
return _prev_index(
np.asarray(index),
self._extend_offset,
self.done,
self.last_index,
self._lengths,
)
return _prev_index(
np.array([index]),
self._extend_offset,
self.done,
self.last_index,
self._lengths,
)[0]
def next(self, index: int | np.ndarray) -> np.ndarray:
if isinstance(index, list | np.ndarray):
return _next_index(
np.asarray(index),
self._extend_offset,
self.done,
self.last_index,
self._lengths,
)
return _next_index(
np.array([index]),
self._extend_offset,
self.done,
self.last_index,
self._lengths,
)[0]
def update(self, buffer: ReplayBuffer) -> np.ndarray:
"""The ReplayBufferManager cannot be updated by any buffer."""
raise NotImplementedError
def add(
self,
batch: RolloutBatchProtocol,
buffer_ids: np.ndarray | list[int] | None = None,
) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Add a batch of data into ReplayBufferManager.
Each of the data's length (first dimension) must equal to the length of
buffer_ids. By default buffer_ids is [0, 1, ..., buffer_num - 1].
Return (current_index, episode_reward, episode_length, episode_start_index). If
the episode is not finished, the return value of episode_length and
episode_reward is 0.
"""
# preprocess batch
new_batch = Batch()
for key in set(self._reserved_keys).intersection(batch.keys()):
new_batch.__dict__[key] = batch[key]
batch = new_batch
batch.__dict__["done"] = np.logical_or(batch.terminated, batch.truncated)
assert {"obs", "act", "rew", "terminated", "truncated", "done"}.issubset(batch.keys())
if self._save_only_last_obs:
batch.obs = batch.obs[:, -1]
if not self._save_obs_next:
batch.pop("obs_next", None)
elif self._save_only_last_obs:
batch.obs_next = batch.obs_next[:, -1]
# get index
if buffer_ids is None:
buffer_ids = np.arange(self.buffer_num)
ptrs, ep_lens, ep_rews, ep_idxs = [], [], [], []
for batch_idx, buffer_id in enumerate(buffer_ids):
ptr, ep_rew, ep_len, ep_idx = self.buffers[buffer_id]._add_index(
batch.rew[batch_idx],
batch.done[batch_idx],
)
ptrs.append(ptr + self._offset[buffer_id])
ep_lens.append(ep_len)
ep_rews.append(ep_rew)
ep_idxs.append(ep_idx + self._offset[buffer_id])
self.last_index[buffer_id] = ptr + self._offset[buffer_id]
self._lengths[buffer_id] = len(self.buffers[buffer_id])
ptrs = np.array(ptrs)
try:
self._meta[ptrs] = batch
except ValueError:
batch.rew = batch.rew.astype(float)
batch.done = batch.done.astype(bool)
batch.terminated = batch.terminated.astype(bool)
batch.truncated = batch.truncated.astype(bool)
if self._meta.is_empty():
self._meta = create_value(batch, self.maxsize, stack=False) # type: ignore
else: # dynamic key pops up in batch
alloc_by_keys_diff(self._meta, batch, self.maxsize, False)
self._set_batch_for_children()
self._meta[ptrs] = batch
return ptrs, np.array(ep_rews), np.array(ep_lens), np.array(ep_idxs)
def sample_indices(self, batch_size: int) -> np.ndarray:
if batch_size < 0:
return np.array([], int)
if self._sample_avail and self.stack_num > 1:
all_indices = np.concatenate(
[
buf.sample_indices(0) + offset
for offset, buf in zip(self._offset, self.buffers, strict=True)
],
)
if batch_size == 0:
return all_indices
return np.random.choice(all_indices, batch_size)
if batch_size == 0: # get all available indices
sample_num = np.zeros(self.buffer_num, int)
else:
buffer_idx = np.random.choice(
self.buffer_num,
batch_size,
p=self._lengths / self._lengths.sum(),
)
sample_num = np.bincount(buffer_idx, minlength=self.buffer_num)
# avoid batch_size > 0 and sample_num == 0 -> get child's all data
sample_num[sample_num == 0] = -1
return np.concatenate(
[
buf.sample_indices(bsz) + offset
for offset, buf, bsz in zip(self._offset, self.buffers, sample_num, strict=True)
],
)
class PrioritizedReplayBufferManager(PrioritizedReplayBuffer, ReplayBufferManager):
"""PrioritizedReplayBufferManager contains a list of PrioritizedReplayBuffer with exactly the same configuration.
These replay buffers have contiguous memory layout, and the storage space each
buffer has is a shallow copy of the topmost memory.
:param buffer_list: a list of PrioritizedReplayBuffer needed to be handled.
.. seealso::
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
"""
def __init__(self, buffer_list: Sequence[PrioritizedReplayBuffer]) -> None:
ReplayBufferManager.__init__(self, buffer_list) # type: ignore
kwargs = buffer_list[0].options
for buf in buffer_list:
del buf.weight
PrioritizedReplayBuffer.__init__(self, self.maxsize, **kwargs)
class HERReplayBufferManager(ReplayBufferManager):
"""HERReplayBufferManager contains a list of HERReplayBuffer with exactly the same configuration.
These replay buffers have contiguous memory layout, and the storage space each
buffer has is a shallow copy of the topmost memory.
:param buffer_list: a list of HERReplayBuffer needed to be handled.
.. seealso::
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
"""
def __init__(self, buffer_list: list[HERReplayBuffer]) -> None:
super().__init__(buffer_list)
def _restore_cache(self) -> None:
for buf in self.buffers:
buf._restore_cache()
def save_hdf5(self, path: str, compression: str | None = None) -> None:
self._restore_cache()
return super().save_hdf5(path, compression)
def set_batch(self, batch: RolloutBatchProtocol) -> None:
self._restore_cache()
return super().set_batch(batch)
def update(self, buffer: Union["HERReplayBuffer", "ReplayBuffer"]) -> np.ndarray:
self._restore_cache()
return super().update(buffer)
def add(
self,
batch: RolloutBatchProtocol,
buffer_ids: np.ndarray | list[int] | None = None,
) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
self._restore_cache()
return super().add(batch, buffer_ids)
@njit
def _prev_index(
index: np.ndarray,
offset: np.ndarray,
done: np.ndarray,
last_index: np.ndarray,
lengths: np.ndarray,
) -> np.ndarray:
index = index % offset[-1]
prev_index = np.zeros_like(index)
# disable B905 until strict=True in zip is implemented in numba
# https://github.com/numba/numba/issues/8943
for start, end, cur_len, last in zip( # noqa: B905
offset[:-1],
offset[1:],
lengths,
last_index,
):
mask = (start <= index) & (index < end)
correct_cur_len = max(1, cur_len)
if np.sum(mask) > 0:
subind = index[mask]
subind = (subind - start - 1) % correct_cur_len
end_flag = done[subind + start] | (subind + start == last)
prev_index[mask] = (subind + end_flag) % correct_cur_len + start
return prev_index
@njit
def _next_index(
index: np.ndarray,
offset: np.ndarray,
done: np.ndarray,
last_index: np.ndarray,
lengths: np.ndarray,
) -> np.ndarray:
index = index % offset[-1]
next_index = np.zeros_like(index)
# disable B905 until strict=True in zip is implemented in numba
# https://github.com/numba/numba/issues/8943
for start, end, cur_len, last in zip( # noqa: B905
offset[:-1],
offset[1:],
lengths,
last_index,
):
mask = (start <= index) & (index < end)
correct_cur_len = max(1, cur_len)
if np.sum(mask) > 0:
subind = index[mask]
end_flag = done[subind] | (subind == last)
next_index[mask] = (subind - start + 1 - end_flag) % correct_cur_len + start
return next_index