Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
80 lines
3.0 KiB
Python
80 lines
3.0 KiB
Python
from typing import Any, Literal, cast
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from tianshou.data import Batch, to_torch
|
|
from tianshou.data.batch import BatchProtocol
|
|
from tianshou.data.types import ModelOutputBatchProtocol, RolloutBatchProtocol
|
|
from tianshou.policy import BasePolicy
|
|
from tianshou.policy.base import TLearningRateScheduler
|
|
|
|
|
|
class ImitationPolicy(BasePolicy):
|
|
"""Implementation of vanilla imitation learning.
|
|
|
|
:param actor: a model following the rules in
|
|
:class:`~tianshou.policy.BasePolicy`. (s -> a)
|
|
:param optim: for optimizing the model.
|
|
:param action_space: Env's action_space.
|
|
:param observation_space: Env's observation space.
|
|
:param action_scaling: if True, scale the action from [-1, 1] to the range
|
|
of action_space. Only used if the action_space is continuous.
|
|
:param action_bound_method: method to bound action to range [-1, 1].
|
|
Only used if the action_space is continuous.
|
|
:param lr_scheduler: if not None, will be called in `policy.update()`.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
actor: torch.nn.Module,
|
|
optim: torch.optim.Optimizer,
|
|
action_space: gym.Space,
|
|
observation_space: gym.Space | None = None,
|
|
action_scaling: bool = False,
|
|
action_bound_method: Literal["clip", "tanh"] | None = "clip",
|
|
lr_scheduler: TLearningRateScheduler | None = None,
|
|
) -> None:
|
|
super().__init__(
|
|
action_space=action_space,
|
|
observation_space=observation_space,
|
|
action_scaling=action_scaling,
|
|
action_bound_method=action_bound_method,
|
|
lr_scheduler=lr_scheduler,
|
|
)
|
|
self.actor = actor
|
|
self.optim = optim
|
|
|
|
def forward(
|
|
self,
|
|
batch: RolloutBatchProtocol,
|
|
state: dict | BatchProtocol | np.ndarray | None = None,
|
|
**kwargs: Any,
|
|
) -> ModelOutputBatchProtocol:
|
|
logits, hidden = self.actor(batch.obs, state=state, info=batch.info)
|
|
act = logits.max(dim=1)[1] if self.action_type == "discrete" else logits
|
|
result = Batch(logits=logits, act=act, state=hidden)
|
|
return cast(ModelOutputBatchProtocol, result)
|
|
|
|
def learn(self, batch: RolloutBatchProtocol, *ags: Any, **kwargs: Any) -> dict[str, float]:
|
|
self.optim.zero_grad()
|
|
if self.action_type == "continuous": # regression
|
|
act = self(batch).act
|
|
act_target = to_torch(batch.act, dtype=torch.float32, device=act.device)
|
|
loss = F.mse_loss(act, act_target)
|
|
elif self.action_type == "discrete": # classification
|
|
act = F.log_softmax(self(batch).logits, dim=-1)
|
|
act_target = to_torch(batch.act, dtype=torch.long, device=act.device)
|
|
loss = F.nll_loss(act, act_target)
|
|
loss.backward()
|
|
self.optim.step()
|
|
return {"loss": loss.item()}
|