Tianshou/tianshou/env/venv_wrappers.py
Markus Krimmel ea36dc5195
Changes to support Gym 0.26.0 (#748)
* Changes to support Gym 0.26.0

* Replace map by simpler list comprehension

* Use syntax that is compatible with python 3.7

* Format code

* Fix environment seeding in test environment, fix buffer_profile test

* Remove self.seed() from __init__

* Fix random number generation

* Fix throughput tests

* Fix tests

* Removed done field from Buffer, fixed throughput test, turned off wandb, fixed formatting, fixed type hints, allow preprocessing_fn with truncated and terminated arguments, updated docstrings

* fix lint

* fix

* fix import

* fix

* fix mypy

* pytest --ignore='test/3rd_party'

* Use correct step API in _SetAttrWrapper

* Format

* Fix mypy

* Format

* Fix pydocstyle.
2022-09-26 09:31:23 -07:00

134 lines
4.0 KiB
Python

from typing import Any, List, Optional, Tuple, Union
import numpy as np
from tianshou.env.utils import gym_new_venv_step_type, gym_old_venv_step_type
from tianshou.env.venvs import GYM_RESERVED_KEYS, BaseVectorEnv
from tianshou.utils import RunningMeanStd
class VectorEnvWrapper(BaseVectorEnv):
"""Base class for vectorized environments wrapper."""
def __init__(self, venv: BaseVectorEnv) -> None:
self.venv = venv
self.is_async = venv.is_async
def __len__(self) -> int:
return len(self.venv)
def __getattribute__(self, key: str) -> Any:
if key in GYM_RESERVED_KEYS: # reserved keys in gym.Env
return getattr(self.venv, key)
else:
return super().__getattribute__(key)
def get_env_attr(
self,
key: str,
id: Optional[Union[int, List[int], np.ndarray]] = None,
) -> List[Any]:
return self.venv.get_env_attr(key, id)
def set_env_attr(
self,
key: str,
value: Any,
id: Optional[Union[int, List[int], np.ndarray]] = None,
) -> None:
return self.venv.set_env_attr(key, value, id)
def reset(
self,
id: Optional[Union[int, List[int], np.ndarray]] = None,
**kwargs: Any,
) -> Union[np.ndarray, Tuple[np.ndarray, Union[dict, List[dict]]]]:
return self.venv.reset(id, **kwargs)
def step(
self,
action: np.ndarray,
id: Optional[Union[int, List[int], np.ndarray]] = None,
) -> Union[gym_old_venv_step_type, gym_new_venv_step_type]:
return self.venv.step(action, id)
def seed(
self,
seed: Optional[Union[int, List[int]]] = None,
) -> List[Optional[List[int]]]:
return self.venv.seed(seed)
def render(self, **kwargs: Any) -> List[Any]:
return self.venv.render(**kwargs)
def close(self) -> None:
self.venv.close()
class VectorEnvNormObs(VectorEnvWrapper):
"""An observation normalization wrapper for vectorized environments.
:param bool update_obs_rms: whether to update obs_rms. Default to True.
"""
def __init__(
self,
venv: BaseVectorEnv,
update_obs_rms: bool = True,
) -> None:
super().__init__(venv)
# initialize observation running mean/std
self.update_obs_rms = update_obs_rms
self.obs_rms = RunningMeanStd()
def reset(
self,
id: Optional[Union[int, List[int], np.ndarray]] = None,
**kwargs: Any,
) -> Union[np.ndarray, Tuple[np.ndarray, Union[dict, List[dict]]]]:
rval = self.venv.reset(id, **kwargs)
returns_info = isinstance(rval, (tuple, list)) and (len(rval) == 2) and (
isinstance(rval[1], dict) or isinstance(rval[1][0], dict)
)
if returns_info:
obs, info = rval
else:
obs = rval
if isinstance(obs, tuple):
raise TypeError(
"Tuple observation space is not supported. ",
"Please change it to array or dict space",
)
if self.obs_rms and self.update_obs_rms:
self.obs_rms.update(obs)
obs = self._norm_obs(obs)
if returns_info:
return obs, info
else:
return obs
def step(
self,
action: np.ndarray,
id: Optional[Union[int, List[int], np.ndarray]] = None,
) -> Union[gym_old_venv_step_type, gym_new_venv_step_type]:
step_results = self.venv.step(action, id)
if self.obs_rms and self.update_obs_rms:
self.obs_rms.update(step_results[0])
return (self._norm_obs(step_results[0]), *step_results[1:]) # type:ignore
def _norm_obs(self, obs: np.ndarray) -> np.ndarray:
if self.obs_rms:
return self.obs_rms.norm(obs) # type: ignore
return obs
def set_obs_rms(self, obs_rms: RunningMeanStd) -> None:
"""Set with given observation running mean/std."""
self.obs_rms = obs_rms
def get_obs_rms(self) -> RunningMeanStd:
"""Return observation running mean/std."""
return self.obs_rms