Tianshou/test/discrete/test_c51.py
Michael Panchenko 600f4bbd55
Python 3.9, black + ruff formatting (#921)
Preparation for #914 and #920

Changes formatting to ruff and black. Remove python 3.8

## Additional Changes

- Removed flake8 dependencies
- Adjusted pre-commit. Now CI and Make use pre-commit, reducing the
duplication of linting calls
- Removed check-docstyle option (ruff is doing that)
- Merged format and lint. In CI the format-lint step fails if any
changes are done, so it fulfills the lint functionality.

---------

Co-authored-by: Jiayi Weng <jiayi@openai.com>
2023-08-25 14:40:56 -07:00

216 lines
7.9 KiB
Python

import argparse
import os
import pickle
import pprint
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, PrioritizedVectorReplayBuffer, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import C51Policy
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v0")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1626)
parser.add_argument("--eps-test", type=float, default=0.05)
parser.add_argument("--eps-train", type=float, default=0.1)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--gamma", type=float, default=0.9)
parser.add_argument("--num-atoms", type=int, default=51)
parser.add_argument("--v-min", type=float, default=-10.0)
parser.add_argument("--v-max", type=float, default=10.0)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--target-update-freq", type=int, default=320)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=8000)
parser.add_argument("--step-per-collect", type=int, default=8)
parser.add_argument("--update-per-step", type=float, default=0.125)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128, 128, 128, 128])
parser.add_argument("--training-num", type=int, default=8)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument("--prioritized-replay", action="store_true", default=False)
parser.add_argument("--alpha", type=float, default=0.6)
parser.add_argument("--beta", type=float, default=0.4)
parser.add_argument("--resume", action="store_true")
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--save-interval", type=int, default=4)
return parser.parse_known_args()[0]
def test_c51(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v0": 195}
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
softmax=True,
num_atoms=args.num_atoms,
)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy = C51Policy(
net,
optim,
args.gamma,
args.num_atoms,
args.v_min,
args.v_max,
args.n_step,
target_update_freq=args.target_update_freq,
).to(args.device)
# buffer
if args.prioritized_replay:
buf = PrioritizedVectorReplayBuffer(
args.buffer_size,
buffer_num=len(train_envs),
alpha=args.alpha,
beta=args.beta,
)
else:
buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs))
# collector
train_collector = Collector(policy, train_envs, buf, exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * args.training_num)
# log
log_path = os.path.join(args.logdir, args.task, "c51")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer, save_interval=args.save_interval)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards):
return mean_rewards >= args.reward_threshold
def train_fn(epoch, env_step):
# eps annnealing, just a demo
if env_step <= 10000:
policy.set_eps(args.eps_train)
elif env_step <= 50000:
eps = args.eps_train - (env_step - 10000) / 40000 * (0.9 * args.eps_train)
policy.set_eps(eps)
else:
policy.set_eps(0.1 * args.eps_train)
def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
def save_checkpoint_fn(epoch, env_step, gradient_step):
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
ckpt_path = os.path.join(log_path, "checkpoint.pth")
# Example: saving by epoch num
# ckpt_path = os.path.join(log_path, f"checkpoint_{epoch}.pth")
torch.save(
{
"model": policy.state_dict(),
"optim": optim.state_dict(),
},
ckpt_path,
)
buffer_path = os.path.join(log_path, "train_buffer.pkl")
with open(buffer_path, "wb") as f:
pickle.dump(train_collector.buffer, f)
return ckpt_path
if args.resume:
# load from existing checkpoint
print(f"Loading agent under {log_path}")
ckpt_path = os.path.join(log_path, "checkpoint.pth")
if os.path.exists(ckpt_path):
checkpoint = torch.load(ckpt_path, map_location=args.device)
policy.load_state_dict(checkpoint["model"])
policy.optim.load_state_dict(checkpoint["optim"])
print("Successfully restore policy and optim.")
else:
print("Fail to restore policy and optim.")
buffer_path = os.path.join(log_path, "train_buffer.pkl")
if os.path.exists(buffer_path):
with open(buffer_path, "rb") as f:
train_collector.buffer = pickle.load(f)
print("Successfully restore buffer.")
else:
print("Fail to restore buffer.")
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
update_per_step=args.update_per_step,
train_fn=train_fn,
test_fn=test_fn,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
resume_from_log=args.resume,
save_checkpoint_fn=save_checkpoint_fn,
).run()
assert stop_fn(result["best_reward"])
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
policy.set_eps(args.eps_test)
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
def test_c51_resume(args=get_args()):
args.resume = True
test_c51(args)
def test_pc51(args=get_args()):
args.prioritized_replay = True
args.gamma = 0.95
args.seed = 1
test_c51(args)
if __name__ == "__main__":
test_c51(get_args())