Closes #914 Additional changes: - Deprecate python below 11 - Remove 3rd party and throughput tests. This simplifies install and test pipeline - Remove gym compatibility and shimmy - Format with 3.11 conventions. In particular, add `zip(..., strict=True/False)` where possible Since the additional tests and gym were complicating the CI pipeline (flaky and dist-dependent), it didn't make sense to work on fixing the current tests in this PR to then just delete them in the next one. So this PR changes the build and removes these tests at the same time.
196 lines
7.1 KiB
Python
196 lines
7.1 KiB
Python
import argparse
|
|
import os
|
|
import pprint
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from gymnasium.spaces import Box
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import ICMPolicy, PPOPolicy
|
|
from tianshou.trainer import OnpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import MLP, ActorCritic, Net
|
|
from tianshou.utils.net.discrete import Actor, Critic, IntrinsicCuriosityModule
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="CartPole-v0")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=1626)
|
|
parser.add_argument("--buffer-size", type=int, default=20000)
|
|
parser.add_argument("--lr", type=float, default=3e-4)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
parser.add_argument("--epoch", type=int, default=10)
|
|
parser.add_argument("--step-per-epoch", type=int, default=50000)
|
|
parser.add_argument("--step-per-collect", type=int, default=2000)
|
|
parser.add_argument("--repeat-per-collect", type=int, default=10)
|
|
parser.add_argument("--batch-size", type=int, default=64)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
|
|
parser.add_argument("--training-num", type=int, default=20)
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
# ppo special
|
|
parser.add_argument("--vf-coef", type=float, default=0.5)
|
|
parser.add_argument("--ent-coef", type=float, default=0.0)
|
|
parser.add_argument("--eps-clip", type=float, default=0.2)
|
|
parser.add_argument("--max-grad-norm", type=float, default=0.5)
|
|
parser.add_argument("--gae-lambda", type=float, default=0.95)
|
|
parser.add_argument("--rew-norm", type=int, default=0)
|
|
parser.add_argument("--norm-adv", type=int, default=0)
|
|
parser.add_argument("--recompute-adv", type=int, default=0)
|
|
parser.add_argument("--dual-clip", type=float, default=None)
|
|
parser.add_argument("--value-clip", type=int, default=0)
|
|
parser.add_argument(
|
|
"--lr-scale",
|
|
type=float,
|
|
default=1.0,
|
|
help="use intrinsic curiosity module with this lr scale",
|
|
)
|
|
parser.add_argument(
|
|
"--reward-scale",
|
|
type=float,
|
|
default=0.01,
|
|
help="scaling factor for intrinsic curiosity reward",
|
|
)
|
|
parser.add_argument(
|
|
"--forward-loss-weight",
|
|
type=float,
|
|
default=0.2,
|
|
help="weight for the forward model loss in ICM",
|
|
)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_ppo(args=get_args()):
|
|
env = gym.make(args.task)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"CartPole-v0": 195}
|
|
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
|
|
# train_envs = gym.make(args.task)
|
|
# you can also use tianshou.env.SubprocVectorEnv
|
|
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# model
|
|
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
|
|
critic = Critic(net, device=args.device).to(args.device)
|
|
actor_critic = ActorCritic(actor, critic)
|
|
# orthogonal initialization
|
|
for m in actor_critic.modules():
|
|
if isinstance(m, torch.nn.Linear):
|
|
torch.nn.init.orthogonal_(m.weight)
|
|
torch.nn.init.zeros_(m.bias)
|
|
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
|
|
dist = torch.distributions.Categorical
|
|
policy = PPOPolicy(
|
|
actor,
|
|
critic,
|
|
optim,
|
|
dist,
|
|
action_scaling=isinstance(env.action_space, Box),
|
|
discount_factor=args.gamma,
|
|
max_grad_norm=args.max_grad_norm,
|
|
eps_clip=args.eps_clip,
|
|
vf_coef=args.vf_coef,
|
|
ent_coef=args.ent_coef,
|
|
gae_lambda=args.gae_lambda,
|
|
reward_normalization=args.rew_norm,
|
|
dual_clip=args.dual_clip,
|
|
value_clip=args.value_clip,
|
|
action_space=env.action_space,
|
|
deterministic_eval=True,
|
|
advantage_normalization=args.norm_adv,
|
|
recompute_advantage=args.recompute_adv,
|
|
)
|
|
feature_dim = args.hidden_sizes[-1]
|
|
feature_net = MLP(
|
|
np.prod(args.state_shape),
|
|
output_dim=feature_dim,
|
|
hidden_sizes=args.hidden_sizes[:-1],
|
|
device=args.device,
|
|
)
|
|
action_dim = np.prod(args.action_shape)
|
|
icm_net = IntrinsicCuriosityModule(
|
|
feature_net,
|
|
feature_dim,
|
|
action_dim,
|
|
hidden_sizes=args.hidden_sizes[-1:],
|
|
device=args.device,
|
|
).to(args.device)
|
|
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr)
|
|
policy = ICMPolicy(
|
|
policy,
|
|
icm_net,
|
|
icm_optim,
|
|
args.lr_scale,
|
|
args.reward_scale,
|
|
args.forward_loss_weight,
|
|
)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
)
|
|
test_collector = Collector(policy, test_envs)
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, "ppo_icm")
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards):
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
# trainer
|
|
result = OnpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
repeat_per_collect=args.repeat_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
step_per_collect=args.step_per_collect,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
assert stop_fn(result["best_reward"])
|
|
|
|
if __name__ == "__main__":
|
|
pprint.pprint(result)
|
|
# Let's watch its performance!
|
|
env = gym.make(args.task)
|
|
policy.eval()
|
|
collector = Collector(policy, env)
|
|
result = collector.collect(n_episode=1, render=args.render)
|
|
rews, lens = result["rews"], result["lens"]
|
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_ppo()
|