Tianshou/test/offline/test_discrete_crr.py
Michael Panchenko 2cc34fb72b
Poetry install, remove gym, bump python (#925)
Closes #914 

Additional changes:

- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible

Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
2023-09-05 14:34:23 -07:00

141 lines
4.9 KiB
Python

import argparse
import os
import pickle
import pprint
import gymnasium as gym
import numpy as np
import torch
from gymnasium.spaces import Box
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import DiscreteCRRPolicy
from tianshou.trainer import OfflineTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import ActorCritic, Net
from tianshou.utils.net.discrete import Actor, Critic
if __name__ == "__main__":
from gather_cartpole_data import expert_file_name, gather_data
else: # pytest
from test.offline.gather_cartpole_data import expert_file_name, gather_data
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v0")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1626)
parser.add_argument("--lr", type=float, default=7e-4)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--target-update-freq", type=int, default=320)
parser.add_argument("--epoch", type=int, default=5)
parser.add_argument("--update-per-epoch", type=int, default=1000)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
return parser.parse_known_args()[0]
def test_discrete_crr(args=get_args()):
# envs
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v0": 180}
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, args.hidden_sizes[0], device=args.device)
actor = Actor(
net,
args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
softmax_output=False,
)
critic = Critic(
net,
hidden_sizes=args.hidden_sizes,
last_size=np.prod(args.action_shape),
device=args.device,
)
actor_critic = ActorCritic(actor, critic)
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
policy = DiscreteCRRPolicy(
actor,
critic,
optim,
args.gamma,
action_scaling=isinstance(env.action_space, Box),
target_update_freq=args.target_update_freq,
).to(args.device)
# buffer
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
if args.load_buffer_name.endswith(".hdf5"):
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
else:
with open(args.load_buffer_name, "rb") as f:
buffer = pickle.load(f)
else:
buffer = gather_data()
# collector
test_collector = Collector(policy, test_envs, exploration_noise=True)
log_path = os.path.join(args.logdir, args.task, "discrete_crr")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards):
return mean_rewards >= args.reward_threshold
result = OfflineTrainer(
policy=policy,
buffer=buffer,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.update_per_epoch,
episode_per_test=args.test_num,
batch_size=args.batch_size,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
assert stop_fn(result["best_reward"])
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == "__main__":
test_discrete_crr(get_args())