Tianshou/test/pettingzoo/pistonball.py
Michael Panchenko 2cc34fb72b
Poetry install, remove gym, bump python (#925)
Closes #914 

Additional changes:

- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible

Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
2023-09-05 14:34:23 -07:00

195 lines
6.7 KiB
Python

import argparse
import os
import warnings
import gymnasium as gym
import numpy as np
import torch
from pettingzoo.butterfly import pistonball_v6
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.env.pettingzoo_env import PettingZooEnv
from tianshou.policy import BasePolicy, DQNPolicy, MultiAgentPolicyManager
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
def get_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=1626)
parser.add_argument("--eps-test", type=float, default=0.05)
parser.add_argument("--eps-train", type=float, default=0.1)
parser.add_argument("--buffer-size", type=int, default=2000)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument(
"--gamma",
type=float,
default=0.9,
help="a smaller gamma favors earlier win",
)
parser.add_argument(
"--n-pistons",
type=int,
default=3,
help="Number of pistons(agents) in the env",
)
parser.add_argument("--n-step", type=int, default=100)
parser.add_argument("--target-update-freq", type=int, default=320)
parser.add_argument("--epoch", type=int, default=3)
parser.add_argument("--step-per-epoch", type=int, default=500)
parser.add_argument("--step-per-collect", type=int, default=10)
parser.add_argument("--update-per-step", type=float, default=0.1)
parser.add_argument("--batch-size", type=int, default=100)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--training-num", type=int, default=10)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="no training, watch the play of pre-trained models",
)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
return parser
def get_args() -> argparse.Namespace:
parser = get_parser()
return parser.parse_known_args()[0]
def get_env(args: argparse.Namespace = get_args()):
return PettingZooEnv(pistonball_v6.env(continuous=False, n_pistons=args.n_pistons))
def get_agents(
args: argparse.Namespace = get_args(),
agents: list[BasePolicy] | None = None,
optims: list[torch.optim.Optimizer] | None = None,
) -> tuple[BasePolicy, list[torch.optim.Optimizer], list]:
env = get_env()
observation_space = (
env.observation_space["observation"]
if isinstance(env.observation_space, gym.spaces.Dict)
else env.observation_space
)
args.state_shape = observation_space.shape or observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
if agents is None:
agents = []
optims = []
for _ in range(args.n_pistons):
# model
net = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
agent = DQNPolicy(
net,
optim,
args.gamma,
args.n_step,
target_update_freq=args.target_update_freq,
)
agents.append(agent)
optims.append(optim)
policy = MultiAgentPolicyManager(agents, env)
return policy, optims, env.agents
def train_agent(
args: argparse.Namespace = get_args(),
agents: list[BasePolicy] | None = None,
optims: list[torch.optim.Optimizer] | None = None,
) -> tuple[dict, BasePolicy]:
train_envs = DummyVectorEnv([get_env for _ in range(args.training_num)])
test_envs = DummyVectorEnv([get_env for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
policy, optim, agents = get_agents(args, agents=agents, optims=optims)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True,
)
test_collector = Collector(policy, test_envs, exploration_noise=True)
train_collector.collect(n_step=args.batch_size * args.training_num)
# log
log_path = os.path.join(args.logdir, "pistonball", "dqn")
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer)
def save_best_fn(policy):
pass
def stop_fn(mean_rewards):
return False
def train_fn(epoch, env_step):
[agent.set_eps(args.eps_train) for agent in policy.policies.values()]
def test_fn(epoch, env_step):
[agent.set_eps(args.eps_test) for agent in policy.policies.values()]
def reward_metric(rews):
return rews[:, 0]
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
train_fn=train_fn,
test_fn=test_fn,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
update_per_step=args.update_per_step,
logger=logger,
test_in_train=False,
reward_metric=reward_metric,
).run()
return result, policy
def watch(args: argparse.Namespace = get_args(), policy: BasePolicy | None = None) -> None:
env = DummyVectorEnv([get_env])
if not policy:
warnings.warn(
"watching random agents, as loading pre-trained policies is currently not supported",
)
policy, _, _ = get_agents(args)
policy.eval()
[agent.set_eps(args.eps_test) for agent in policy.policies.values()]
collector = Collector(policy, env, exploration_noise=True)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews[:, 0].mean()}, length: {lens.mean()}")