Michael Panchenko 2cc34fb72b
Poetry install, remove gym, bump python (#925)
Closes #914 

Additional changes:

- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible

Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
2023-09-05 14:34:23 -07:00

135 lines
4.3 KiB
Python

import numpy as np
from numba import njit
class SegmentTree:
"""Implementation of Segment Tree.
The segment tree stores an array ``arr`` with size ``n``. It supports value
update and fast query of the sum for the interval ``[left, right)`` in
O(log n) time. The detailed procedure is as follows:
1. Pad the array to have length of power of 2, so that leaf nodes in the \
segment tree have the same depth.
2. Store the segment tree in a binary heap.
:param int size: the size of segment tree.
"""
def __init__(self, size: int) -> None:
bound = 1
while bound < size:
bound *= 2
self._size = size
self._bound = bound
self._value = np.zeros([bound * 2])
self._compile()
def __len__(self) -> int:
return self._size
def __getitem__(self, index: int | np.ndarray) -> float | np.ndarray:
"""Return self[index]."""
return self._value[index + self._bound]
def __setitem__(self, index: int | np.ndarray, value: float | np.ndarray) -> None:
"""Update values in segment tree.
Duplicate values in ``index`` are handled by numpy: later index
overwrites previous ones.
::
>>> a = np.array([1, 2, 3, 4])
>>> a[[0, 1, 0, 1]] = [4, 5, 6, 7]
>>> print(a)
[6 7 3 4]
"""
if isinstance(index, int):
index, value = np.array([index]), np.array([value])
assert np.all(index >= 0)
assert np.all(index < self._size)
_setitem(self._value, index + self._bound, value)
def reduce(self, start: int = 0, end: int | None = None) -> float:
"""Return operation(value[start:end])."""
if start == 0 and end is None:
return self._value[1]
if end is None:
end = self._size
if end < 0:
end += self._size
return _reduce(self._value, start + self._bound - 1, end + self._bound)
def get_prefix_sum_idx(self, value: float | np.ndarray) -> int | np.ndarray:
r"""Find the index with given value.
Return the minimum index for each ``v`` in ``value`` so that
:math:`v \le \mathrm{sums}_i`, where
:math:`\mathrm{sums}_i = \sum_{j = 0}^{i} \mathrm{arr}_j`.
.. warning::
Please make sure all of the values inside the segment tree are
non-negative when using this function.
"""
assert np.all(value >= 0.0)
assert np.all(value < self._value[1])
single = False
if not isinstance(value, np.ndarray):
value = np.array([value])
single = True
index = _get_prefix_sum_idx(value, self._bound, self._value)
return index.item() if single else index
def _compile(self) -> None:
f64 = np.array([0, 1], dtype=np.float64)
f32 = np.array([0, 1], dtype=np.float32)
i64 = np.array([0, 1], dtype=np.int64)
_setitem(f64, i64, f64)
_setitem(f64, i64, f32)
_reduce(f64, 0, 1)
_get_prefix_sum_idx(f64, 1, f64)
_get_prefix_sum_idx(f32, 1, f64)
@njit
def _setitem(tree: np.ndarray, index: np.ndarray, value: np.ndarray) -> None:
"""Numba version, 4x faster: 0.1 -> 0.024."""
tree[index] = value
while index[0] > 1:
index //= 2
tree[index] = tree[index * 2] + tree[index * 2 + 1]
@njit
def _reduce(tree: np.ndarray, start: int, end: int) -> float:
"""Numba version, 2x faster: 0.009 -> 0.005."""
# nodes in (start, end) should be aggregated
result = 0.0
while end - start > 1: # (start, end) interval is not empty
if start % 2 == 0:
result += tree[start + 1]
start //= 2
if end % 2 == 1:
result += tree[end - 1]
end //= 2
return result
@njit
def _get_prefix_sum_idx(value: np.ndarray, bound: int, sums: np.ndarray) -> np.ndarray:
"""Numba version (v0.51), 5x speed up with size=100000 and bsz=64.
vectorized np: 0.0923 (numpy best) -> 0.024 (now)
for-loop: 0.2914 -> 0.019 (but not so stable)
"""
index = np.ones(value.shape, dtype=np.int64)
while index[0] < bound:
index *= 2
lsons = sums[index]
direct = lsons < value
value -= lsons * direct
index += direct
index -= bound
return index