Michael Panchenko 2cc34fb72b
Poetry install, remove gym, bump python (#925)
Closes #914 

Additional changes:

- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible

Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
2023-09-05 14:34:23 -07:00

87 lines
2.4 KiB
Python

from abc import ABC, abstractmethod
from collections.abc import Sequence
import numpy as np
class BaseNoise(ABC):
"""The action noise base class."""
def __init__(self) -> None:
super().__init__()
@abstractmethod
def reset(self) -> None:
"""Reset to the initial state."""
@abstractmethod
def __call__(self, size: Sequence[int]) -> np.ndarray:
"""Generate new noise."""
raise NotImplementedError
class GaussianNoise(BaseNoise):
"""The vanilla Gaussian process, for exploration in DDPG by default."""
def __init__(self, mu: float = 0.0, sigma: float = 1.0) -> None:
super().__init__()
self._mu = mu
assert sigma >= 0, "Noise std should not be negative."
self._sigma = sigma
def __call__(self, size: Sequence[int]) -> np.ndarray:
return np.random.normal(self._mu, self._sigma, size)
def reset(self) -> None:
pass
class OUNoise(BaseNoise):
"""Class for Ornstein-Uhlenbeck process, as used for exploration in DDPG.
Usage:
::
# init
self.noise = OUNoise()
# generate noise
noise = self.noise(logits.shape, eps)
For required parameters, you can refer to the stackoverflow page. However,
our experiment result shows that (similar to OpenAI SpinningUp) using
vanilla Gaussian process has little difference from using the
Ornstein-Uhlenbeck process.
"""
def __init__(
self,
mu: float = 0.0,
sigma: float = 0.3,
theta: float = 0.15,
dt: float = 1e-2,
x0: float | np.ndarray | None = None,
) -> None:
super().__init__()
self._mu = mu
self._alpha = theta * dt
self._beta = sigma * np.sqrt(dt)
self._x0 = x0
self.reset()
def reset(self) -> None:
"""Reset to the initial state."""
self._x = self._x0
def __call__(self, size: Sequence[int], mu: float | None = None) -> np.ndarray:
"""Generate new noise.
Return an numpy array which size is equal to ``size``.
"""
if self._x is None or isinstance(self._x, np.ndarray) and self._x.shape != size:
self._x = 0.0
if mu is None:
mu = self._mu
r = self._beta * np.random.normal(size=size)
self._x = self._x + self._alpha * (mu - self._x) + r
return self._x # type: ignore