Closes #914 Additional changes: - Deprecate python below 11 - Remove 3rd party and throughput tests. This simplifies install and test pipeline - Remove gym compatibility and shimmy - Format with 3.11 conventions. In particular, add `zip(..., strict=True/False)` where possible Since the additional tests and gym were complicating the CI pipeline (flaky and dist-dependent), it didn't make sense to work on fixing the current tests in this PR to then just delete them in the next one. So this PR changes the build and removes these tests at the same time.
170 lines
7.3 KiB
Python
170 lines
7.3 KiB
Python
from collections.abc import Callable
|
|
from typing import Any, cast
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
from tianshou.data import ReplayBuffer, to_torch_as
|
|
from tianshou.data.types import BatchWithAdvantagesProtocol, RolloutBatchProtocol
|
|
from tianshou.policy import PGPolicy
|
|
from tianshou.policy.modelfree.pg import TDistParams
|
|
from tianshou.utils.net.common import ActorCritic
|
|
|
|
|
|
class A2CPolicy(PGPolicy):
|
|
"""Implementation of Synchronous Advantage Actor-Critic. arXiv:1602.01783.
|
|
|
|
:param torch.nn.Module actor: the actor network following the rules in
|
|
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
|
|
:param torch.nn.Module critic: the critic network. (s -> V(s))
|
|
:param torch.optim.Optimizer optim: the optimizer for actor and critic network.
|
|
:param dist_fn: distribution class for computing the action.
|
|
:param float discount_factor: in [0, 1]. Default to 0.99.
|
|
:param float vf_coef: weight for value loss. Default to 0.5.
|
|
:param float ent_coef: weight for entropy loss. Default to 0.01.
|
|
:param float max_grad_norm: clipping gradients in back propagation. Default to
|
|
None.
|
|
:param float gae_lambda: in [0, 1], param for Generalized Advantage Estimation.
|
|
Default to 0.95.
|
|
:param bool reward_normalization: normalize estimated values to have std close to
|
|
1. Default to False.
|
|
:param int max_batchsize: the maximum size of the batch when computing GAE,
|
|
depends on the size of available memory and the memory cost of the
|
|
model; should be as large as possible within the memory constraint.
|
|
Default to 256.
|
|
:param bool action_scaling: whether to map actions from range [-1, 1] to range
|
|
[action_spaces.low, action_spaces.high]. Default to True.
|
|
:param str action_bound_method: method to bound action to range [-1, 1], can be
|
|
either "clip" (for simply clipping the action), "tanh" (for applying tanh
|
|
squashing) for now, or empty string for no bounding. Default to "clip".
|
|
:param Optional[gym.Space] action_space: env's action space, mandatory if you want
|
|
to use option "action_scaling" or "action_bound_method". Default to None.
|
|
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
|
|
optimizer in each policy.update(). Default to None (no lr_scheduler).
|
|
:param bool deterministic_eval: whether to use deterministic action instead of
|
|
stochastic action sampled by the policy. Default to False.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
actor: torch.nn.Module,
|
|
critic: torch.nn.Module,
|
|
optim: torch.optim.Optimizer,
|
|
dist_fn: Callable[[TDistParams], torch.distributions.Distribution],
|
|
vf_coef: float = 0.5,
|
|
ent_coef: float = 0.01,
|
|
max_grad_norm: float | None = None,
|
|
gae_lambda: float = 0.95,
|
|
max_batchsize: int = 256,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
super().__init__(actor, optim, dist_fn, **kwargs)
|
|
self.critic = critic
|
|
assert 0.0 <= gae_lambda <= 1.0, "GAE lambda should be in [0, 1]."
|
|
self._lambda = gae_lambda
|
|
self._weight_vf = vf_coef
|
|
self._weight_ent = ent_coef
|
|
self._grad_norm = max_grad_norm
|
|
self._batch = max_batchsize
|
|
self._actor_critic = ActorCritic(self.actor, self.critic)
|
|
|
|
def process_fn(
|
|
self,
|
|
batch: RolloutBatchProtocol,
|
|
buffer: ReplayBuffer,
|
|
indices: np.ndarray,
|
|
) -> BatchWithAdvantagesProtocol:
|
|
batch = self._compute_returns(batch, buffer, indices)
|
|
batch.act = to_torch_as(batch.act, batch.v_s)
|
|
return batch
|
|
|
|
def _compute_returns(
|
|
self,
|
|
batch: RolloutBatchProtocol,
|
|
buffer: ReplayBuffer,
|
|
indices: np.ndarray,
|
|
) -> BatchWithAdvantagesProtocol:
|
|
v_s, v_s_ = [], []
|
|
with torch.no_grad():
|
|
for minibatch in batch.split(self._batch, shuffle=False, merge_last=True):
|
|
v_s.append(self.critic(minibatch.obs))
|
|
v_s_.append(self.critic(minibatch.obs_next))
|
|
batch.v_s = torch.cat(v_s, dim=0).flatten() # old value
|
|
v_s = batch.v_s.cpu().numpy()
|
|
v_s_ = torch.cat(v_s_, dim=0).flatten().cpu().numpy()
|
|
# when normalizing values, we do not minus self.ret_rms.mean to be numerically
|
|
# consistent with OPENAI baselines' value normalization pipeline. Empirical
|
|
# study also shows that "minus mean" will harm performances a tiny little bit
|
|
# due to unknown reasons (on Mujoco envs, not confident, though).
|
|
if self._rew_norm: # unnormalize v_s & v_s_
|
|
v_s = v_s * np.sqrt(self.ret_rms.var + self._eps)
|
|
v_s_ = v_s_ * np.sqrt(self.ret_rms.var + self._eps)
|
|
unnormalized_returns, advantages = self.compute_episodic_return(
|
|
batch,
|
|
buffer,
|
|
indices,
|
|
v_s_,
|
|
v_s,
|
|
gamma=self._gamma,
|
|
gae_lambda=self._lambda,
|
|
)
|
|
if self._rew_norm:
|
|
batch.returns = unnormalized_returns / np.sqrt(self.ret_rms.var + self._eps)
|
|
self.ret_rms.update(unnormalized_returns)
|
|
else:
|
|
batch.returns = unnormalized_returns
|
|
batch.returns = to_torch_as(batch.returns, batch.v_s)
|
|
batch.adv = to_torch_as(advantages, batch.v_s)
|
|
return cast(BatchWithAdvantagesProtocol, batch)
|
|
|
|
# TODO: mypy complains b/c signature is different from superclass, although
|
|
# it's compatible. Can this be fixed?
|
|
def learn( # type: ignore
|
|
self,
|
|
batch: RolloutBatchProtocol,
|
|
batch_size: int,
|
|
repeat: int,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> dict[str, list[float]]:
|
|
losses, actor_losses, vf_losses, ent_losses = [], [], [], []
|
|
for _ in range(repeat):
|
|
for minibatch in batch.split(batch_size, merge_last=True):
|
|
# calculate loss for actor
|
|
dist = self(minibatch).dist
|
|
log_prob = dist.log_prob(minibatch.act)
|
|
log_prob = log_prob.reshape(len(minibatch.adv), -1).transpose(0, 1)
|
|
actor_loss = -(log_prob * minibatch.adv).mean()
|
|
# calculate loss for critic
|
|
value = self.critic(minibatch.obs).flatten()
|
|
vf_loss = F.mse_loss(minibatch.returns, value)
|
|
# calculate regularization and overall loss
|
|
ent_loss = dist.entropy().mean()
|
|
loss = actor_loss + self._weight_vf * vf_loss - self._weight_ent * ent_loss
|
|
self.optim.zero_grad()
|
|
loss.backward()
|
|
if self._grad_norm: # clip large gradient
|
|
nn.utils.clip_grad_norm_(
|
|
self._actor_critic.parameters(),
|
|
max_norm=self._grad_norm,
|
|
)
|
|
self.optim.step()
|
|
actor_losses.append(actor_loss.item())
|
|
vf_losses.append(vf_loss.item())
|
|
ent_losses.append(ent_loss.item())
|
|
losses.append(loss.item())
|
|
|
|
return {
|
|
"loss": losses,
|
|
"loss/actor": actor_losses,
|
|
"loss/vf": vf_losses,
|
|
"loss/ent": ent_losses,
|
|
}
|