Michael Panchenko 2cc34fb72b
Poetry install, remove gym, bump python (#925)
Closes #914 

Additional changes:

- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible

Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
2023-09-05 14:34:23 -07:00

170 lines
7.3 KiB
Python

from collections.abc import Callable
from typing import Any, cast
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from tianshou.data import ReplayBuffer, to_torch_as
from tianshou.data.types import BatchWithAdvantagesProtocol, RolloutBatchProtocol
from tianshou.policy import PGPolicy
from tianshou.policy.modelfree.pg import TDistParams
from tianshou.utils.net.common import ActorCritic
class A2CPolicy(PGPolicy):
"""Implementation of Synchronous Advantage Actor-Critic. arXiv:1602.01783.
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.nn.Module critic: the critic network. (s -> V(s))
:param torch.optim.Optimizer optim: the optimizer for actor and critic network.
:param dist_fn: distribution class for computing the action.
:param float discount_factor: in [0, 1]. Default to 0.99.
:param float vf_coef: weight for value loss. Default to 0.5.
:param float ent_coef: weight for entropy loss. Default to 0.01.
:param float max_grad_norm: clipping gradients in back propagation. Default to
None.
:param float gae_lambda: in [0, 1], param for Generalized Advantage Estimation.
Default to 0.95.
:param bool reward_normalization: normalize estimated values to have std close to
1. Default to False.
:param int max_batchsize: the maximum size of the batch when computing GAE,
depends on the size of available memory and the memory cost of the
model; should be as large as possible within the memory constraint.
Default to 256.
:param bool action_scaling: whether to map actions from range [-1, 1] to range
[action_spaces.low, action_spaces.high]. Default to True.
:param str action_bound_method: method to bound action to range [-1, 1], can be
either "clip" (for simply clipping the action), "tanh" (for applying tanh
squashing) for now, or empty string for no bounding. Default to "clip".
:param Optional[gym.Space] action_space: env's action space, mandatory if you want
to use option "action_scaling" or "action_bound_method". Default to None.
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
optimizer in each policy.update(). Default to None (no lr_scheduler).
:param bool deterministic_eval: whether to use deterministic action instead of
stochastic action sampled by the policy. Default to False.
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
actor: torch.nn.Module,
critic: torch.nn.Module,
optim: torch.optim.Optimizer,
dist_fn: Callable[[TDistParams], torch.distributions.Distribution],
vf_coef: float = 0.5,
ent_coef: float = 0.01,
max_grad_norm: float | None = None,
gae_lambda: float = 0.95,
max_batchsize: int = 256,
**kwargs: Any,
) -> None:
super().__init__(actor, optim, dist_fn, **kwargs)
self.critic = critic
assert 0.0 <= gae_lambda <= 1.0, "GAE lambda should be in [0, 1]."
self._lambda = gae_lambda
self._weight_vf = vf_coef
self._weight_ent = ent_coef
self._grad_norm = max_grad_norm
self._batch = max_batchsize
self._actor_critic = ActorCritic(self.actor, self.critic)
def process_fn(
self,
batch: RolloutBatchProtocol,
buffer: ReplayBuffer,
indices: np.ndarray,
) -> BatchWithAdvantagesProtocol:
batch = self._compute_returns(batch, buffer, indices)
batch.act = to_torch_as(batch.act, batch.v_s)
return batch
def _compute_returns(
self,
batch: RolloutBatchProtocol,
buffer: ReplayBuffer,
indices: np.ndarray,
) -> BatchWithAdvantagesProtocol:
v_s, v_s_ = [], []
with torch.no_grad():
for minibatch in batch.split(self._batch, shuffle=False, merge_last=True):
v_s.append(self.critic(minibatch.obs))
v_s_.append(self.critic(minibatch.obs_next))
batch.v_s = torch.cat(v_s, dim=0).flatten() # old value
v_s = batch.v_s.cpu().numpy()
v_s_ = torch.cat(v_s_, dim=0).flatten().cpu().numpy()
# when normalizing values, we do not minus self.ret_rms.mean to be numerically
# consistent with OPENAI baselines' value normalization pipeline. Empirical
# study also shows that "minus mean" will harm performances a tiny little bit
# due to unknown reasons (on Mujoco envs, not confident, though).
if self._rew_norm: # unnormalize v_s & v_s_
v_s = v_s * np.sqrt(self.ret_rms.var + self._eps)
v_s_ = v_s_ * np.sqrt(self.ret_rms.var + self._eps)
unnormalized_returns, advantages = self.compute_episodic_return(
batch,
buffer,
indices,
v_s_,
v_s,
gamma=self._gamma,
gae_lambda=self._lambda,
)
if self._rew_norm:
batch.returns = unnormalized_returns / np.sqrt(self.ret_rms.var + self._eps)
self.ret_rms.update(unnormalized_returns)
else:
batch.returns = unnormalized_returns
batch.returns = to_torch_as(batch.returns, batch.v_s)
batch.adv = to_torch_as(advantages, batch.v_s)
return cast(BatchWithAdvantagesProtocol, batch)
# TODO: mypy complains b/c signature is different from superclass, although
# it's compatible. Can this be fixed?
def learn( # type: ignore
self,
batch: RolloutBatchProtocol,
batch_size: int,
repeat: int,
*args: Any,
**kwargs: Any,
) -> dict[str, list[float]]:
losses, actor_losses, vf_losses, ent_losses = [], [], [], []
for _ in range(repeat):
for minibatch in batch.split(batch_size, merge_last=True):
# calculate loss for actor
dist = self(minibatch).dist
log_prob = dist.log_prob(minibatch.act)
log_prob = log_prob.reshape(len(minibatch.adv), -1).transpose(0, 1)
actor_loss = -(log_prob * minibatch.adv).mean()
# calculate loss for critic
value = self.critic(minibatch.obs).flatten()
vf_loss = F.mse_loss(minibatch.returns, value)
# calculate regularization and overall loss
ent_loss = dist.entropy().mean()
loss = actor_loss + self._weight_vf * vf_loss - self._weight_ent * ent_loss
self.optim.zero_grad()
loss.backward()
if self._grad_norm: # clip large gradient
nn.utils.clip_grad_norm_(
self._actor_critic.parameters(),
max_norm=self._grad_norm,
)
self.optim.step()
actor_losses.append(actor_loss.item())
vf_losses.append(vf_loss.item())
ent_losses.append(ent_loss.item())
losses.append(loss.item())
return {
"loss": losses,
"loss/actor": actor_losses,
"loss/vf": vf_losses,
"loss/ent": ent_losses,
}