Closes #914 Additional changes: - Deprecate python below 11 - Remove 3rd party and throughput tests. This simplifies install and test pipeline - Remove gym compatibility and shimmy - Format with 3.11 conventions. In particular, add `zip(..., strict=True/False)` where possible Since the additional tests and gym were complicating the CI pipeline (flaky and dist-dependent), it didn't make sense to work on fixing the current tests in this PR to then just delete them in the next one. So this PR changes the build and removes these tests at the same time.
166 lines
5.9 KiB
Python
166 lines
5.9 KiB
Python
from typing import Any
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.distributions import Categorical
|
|
|
|
from tianshou.data import Batch, ReplayBuffer, to_torch
|
|
from tianshou.data.batch import BatchProtocol
|
|
from tianshou.data.types import RolloutBatchProtocol
|
|
from tianshou.policy import SACPolicy
|
|
|
|
|
|
class DiscreteSACPolicy(SACPolicy):
|
|
"""Implementation of SAC for Discrete Action Settings. arXiv:1910.07207.
|
|
|
|
:param torch.nn.Module actor: the actor network following the rules in
|
|
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
|
|
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
|
|
:param torch.nn.Module critic1: the first critic network. (s -> Q(s))
|
|
:param torch.optim.Optimizer critic1_optim: the optimizer for the first
|
|
critic network.
|
|
:param torch.nn.Module critic2: the second critic network. (s -> Q(s))
|
|
:param torch.optim.Optimizer critic2_optim: the optimizer for the second
|
|
critic network.
|
|
:param float tau: param for soft update of the target network. Default to 0.005.
|
|
:param float gamma: discount factor, in [0, 1]. Default to 0.99.
|
|
:param (float, torch.Tensor, torch.optim.Optimizer) or float alpha: entropy
|
|
regularization coefficient. Default to 0.2.
|
|
If a tuple (target_entropy, log_alpha, alpha_optim) is provided, the
|
|
alpha is automatically tuned.
|
|
:param bool reward_normalization: normalize the reward to Normal(0, 1).
|
|
Default to False.
|
|
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
|
|
optimizer in each policy.update(). Default to None (no lr_scheduler).
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
actor: torch.nn.Module,
|
|
actor_optim: torch.optim.Optimizer,
|
|
critic1: torch.nn.Module,
|
|
critic1_optim: torch.optim.Optimizer,
|
|
critic2: torch.nn.Module,
|
|
critic2_optim: torch.optim.Optimizer,
|
|
tau: float = 0.005,
|
|
gamma: float = 0.99,
|
|
alpha: float | tuple[float, torch.Tensor, torch.optim.Optimizer] = 0.2,
|
|
reward_normalization: bool = False,
|
|
estimation_step: int = 1,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
super().__init__(
|
|
actor,
|
|
actor_optim,
|
|
critic1,
|
|
critic1_optim,
|
|
critic2,
|
|
critic2_optim,
|
|
tau,
|
|
gamma,
|
|
alpha,
|
|
reward_normalization,
|
|
estimation_step,
|
|
action_scaling=False,
|
|
# Note: inheriting from continuous sac reduces code duplication,
|
|
# but the action_bound_method has to be disabled
|
|
action_bound_method=None,
|
|
**kwargs,
|
|
)
|
|
self._alpha: float | torch.Tensor
|
|
|
|
def forward( # type: ignore
|
|
self,
|
|
batch: Batch,
|
|
state: dict | Batch | np.ndarray | None = None,
|
|
input: str = "obs",
|
|
**kwargs: Any,
|
|
) -> Batch:
|
|
obs = batch[input]
|
|
logits, hidden = self.actor(obs, state=state, info=batch.info)
|
|
dist = Categorical(logits=logits)
|
|
if self._deterministic_eval and not self.training:
|
|
act = logits.argmax(axis=-1)
|
|
else:
|
|
act = dist.sample()
|
|
return Batch(logits=logits, act=act, state=hidden, dist=dist)
|
|
|
|
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor:
|
|
batch = buffer[indices] # batch.obs: s_{t+n}
|
|
obs_next_result = self(batch, input="obs_next")
|
|
dist = obs_next_result.dist
|
|
target_q = dist.probs * torch.min(
|
|
self.critic1_old(batch.obs_next),
|
|
self.critic2_old(batch.obs_next),
|
|
)
|
|
return target_q.sum(dim=-1) + self._alpha * dist.entropy()
|
|
|
|
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> dict[str, float]:
|
|
weight = batch.pop("weight", 1.0)
|
|
target_q = batch.returns.flatten()
|
|
act = to_torch(batch.act[:, np.newaxis], device=target_q.device, dtype=torch.long)
|
|
|
|
# critic 1
|
|
current_q1 = self.critic1(batch.obs).gather(1, act).flatten()
|
|
td1 = current_q1 - target_q
|
|
critic1_loss = (td1.pow(2) * weight).mean()
|
|
|
|
self.critic1_optim.zero_grad()
|
|
critic1_loss.backward()
|
|
self.critic1_optim.step()
|
|
|
|
# critic 2
|
|
current_q2 = self.critic2(batch.obs).gather(1, act).flatten()
|
|
td2 = current_q2 - target_q
|
|
critic2_loss = (td2.pow(2) * weight).mean()
|
|
|
|
self.critic2_optim.zero_grad()
|
|
critic2_loss.backward()
|
|
self.critic2_optim.step()
|
|
batch.weight = (td1 + td2) / 2.0 # prio-buffer
|
|
|
|
# actor
|
|
dist = self(batch).dist
|
|
entropy = dist.entropy()
|
|
with torch.no_grad():
|
|
current_q1a = self.critic1(batch.obs)
|
|
current_q2a = self.critic2(batch.obs)
|
|
q = torch.min(current_q1a, current_q2a)
|
|
actor_loss = -(self._alpha * entropy + (dist.probs * q).sum(dim=-1)).mean()
|
|
self.actor_optim.zero_grad()
|
|
actor_loss.backward()
|
|
self.actor_optim.step()
|
|
|
|
if self._is_auto_alpha:
|
|
log_prob = -entropy.detach() + self._target_entropy
|
|
alpha_loss = -(self._log_alpha * log_prob).mean()
|
|
self._alpha_optim.zero_grad()
|
|
alpha_loss.backward()
|
|
self._alpha_optim.step()
|
|
self._alpha = self._log_alpha.detach().exp()
|
|
|
|
self.sync_weight()
|
|
|
|
result = {
|
|
"loss/actor": actor_loss.item(),
|
|
"loss/critic1": critic1_loss.item(),
|
|
"loss/critic2": critic2_loss.item(),
|
|
}
|
|
if self._is_auto_alpha:
|
|
result["loss/alpha"] = alpha_loss.item()
|
|
result["alpha"] = self._alpha.item() # type: ignore
|
|
|
|
return result
|
|
|
|
def exploration_noise(
|
|
self,
|
|
act: np.ndarray | BatchProtocol,
|
|
batch: RolloutBatchProtocol,
|
|
) -> np.ndarray | BatchProtocol:
|
|
return act
|