Closes #914 Additional changes: - Deprecate python below 11 - Remove 3rd party and throughput tests. This simplifies install and test pipeline - Remove gym compatibility and shimmy - Format with 3.11 conventions. In particular, add `zip(..., strict=True/False)` where possible Since the additional tests and gym were complicating the CI pipeline (flaky and dist-dependent), it didn't make sense to work on fixing the current tests in this PR to then just delete them in the next one. So this PR changes the build and removes these tests at the same time.
186 lines
7.3 KiB
Python
186 lines
7.3 KiB
Python
from typing import Any, cast
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from tianshou.data import Batch, ReplayBuffer, to_numpy
|
|
from tianshou.data.types import FQFBatchProtocol, RolloutBatchProtocol
|
|
from tianshou.policy import DQNPolicy, QRDQNPolicy
|
|
from tianshou.utils.net.discrete import FractionProposalNetwork, FullQuantileFunction
|
|
|
|
|
|
class FQFPolicy(QRDQNPolicy):
|
|
"""Implementation of Fully-parameterized Quantile Function. arXiv:1911.02140.
|
|
|
|
:param torch.nn.Module model: a model following the rules in
|
|
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
|
|
:param torch.optim.Optimizer optim: a torch.optim for optimizing the model.
|
|
:param FractionProposalNetwork fraction_model: a FractionProposalNetwork for
|
|
proposing fractions/quantiles given state.
|
|
:param torch.optim.Optimizer fraction_optim: a torch.optim for optimizing
|
|
the fraction model above.
|
|
:param float discount_factor: in [0, 1].
|
|
:param int num_fractions: the number of fractions to use. Default to 32.
|
|
:param float ent_coef: the coefficient for entropy loss. Default to 0.
|
|
:param int estimation_step: the number of steps to look ahead. Default to 1.
|
|
:param int target_update_freq: the target network update frequency (0 if
|
|
you do not use the target network).
|
|
:param bool reward_normalization: normalize the reward to Normal(0, 1).
|
|
Default to False.
|
|
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
|
|
optimizer in each policy.update(). Default to None (no lr_scheduler).
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.policy.QRDQNPolicy` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model: FullQuantileFunction,
|
|
optim: torch.optim.Optimizer,
|
|
fraction_model: FractionProposalNetwork,
|
|
fraction_optim: torch.optim.Optimizer,
|
|
discount_factor: float = 0.99,
|
|
num_fractions: int = 32,
|
|
ent_coef: float = 0.0,
|
|
estimation_step: int = 1,
|
|
target_update_freq: int = 0,
|
|
reward_normalization: bool = False,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
super().__init__(
|
|
model,
|
|
optim,
|
|
discount_factor,
|
|
num_fractions,
|
|
estimation_step,
|
|
target_update_freq,
|
|
reward_normalization,
|
|
**kwargs,
|
|
)
|
|
self.propose_model = fraction_model
|
|
self._ent_coef = ent_coef
|
|
self._fraction_optim = fraction_optim
|
|
|
|
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor:
|
|
batch = buffer[indices] # batch.obs_next: s_{t+n}
|
|
if self._target:
|
|
result = self(batch, input="obs_next")
|
|
act, fractions = result.act, result.fractions
|
|
next_dist = self(batch, model="model_old", input="obs_next", fractions=fractions).logits
|
|
else:
|
|
next_batch = self(batch, input="obs_next")
|
|
act = next_batch.act
|
|
next_dist = next_batch.logits
|
|
return next_dist[np.arange(len(act)), act, :]
|
|
|
|
# TODO: add protocol type for return, fix Liskov substitution principle violation
|
|
def forward( # type: ignore
|
|
self,
|
|
batch: RolloutBatchProtocol,
|
|
state: dict | Batch | np.ndarray | None = None,
|
|
model: str = "model",
|
|
input: str = "obs",
|
|
fractions: Batch | None = None,
|
|
**kwargs: Any,
|
|
) -> FQFBatchProtocol:
|
|
model = getattr(self, model)
|
|
obs = batch[input]
|
|
obs_next = obs.obs if hasattr(obs, "obs") else obs
|
|
if fractions is None:
|
|
(logits, fractions, quantiles_tau), hidden = model(
|
|
obs_next,
|
|
propose_model=self.propose_model,
|
|
state=state,
|
|
info=batch.info,
|
|
)
|
|
else:
|
|
(logits, _, quantiles_tau), hidden = model(
|
|
obs_next,
|
|
propose_model=self.propose_model,
|
|
fractions=fractions,
|
|
state=state,
|
|
info=batch.info,
|
|
)
|
|
weighted_logits = (fractions.taus[:, 1:] - fractions.taus[:, :-1]).unsqueeze(1) * logits
|
|
q = DQNPolicy.compute_q_value(self, weighted_logits.sum(2), getattr(obs, "mask", None))
|
|
if not hasattr(self, "max_action_num"):
|
|
self.max_action_num = q.shape[1]
|
|
act = to_numpy(q.max(dim=1)[1])
|
|
result = Batch(
|
|
logits=logits,
|
|
act=act,
|
|
state=hidden,
|
|
fractions=fractions,
|
|
quantiles_tau=quantiles_tau,
|
|
)
|
|
return cast(FQFBatchProtocol, result)
|
|
|
|
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> dict[str, float]:
|
|
if self._target and self._iter % self._freq == 0:
|
|
self.sync_weight()
|
|
weight = batch.pop("weight", 1.0)
|
|
out = self(batch)
|
|
curr_dist_orig = out.logits
|
|
taus, tau_hats = out.fractions.taus, out.fractions.tau_hats
|
|
act = batch.act
|
|
curr_dist = curr_dist_orig[np.arange(len(act)), act, :].unsqueeze(2)
|
|
target_dist = batch.returns.unsqueeze(1)
|
|
# calculate each element's difference between curr_dist and target_dist
|
|
dist_diff = F.smooth_l1_loss(target_dist, curr_dist, reduction="none")
|
|
huber_loss = (
|
|
(
|
|
dist_diff
|
|
* (tau_hats.unsqueeze(2) - (target_dist - curr_dist).detach().le(0.0).float()).abs()
|
|
)
|
|
.sum(-1)
|
|
.mean(1)
|
|
)
|
|
quantile_loss = (huber_loss * weight).mean()
|
|
# ref: https://github.com/ku2482/fqf-iqn-qrdqn.pytorch/
|
|
# blob/master/fqf_iqn_qrdqn/agent/qrdqn_agent.py L130
|
|
batch.weight = dist_diff.detach().abs().sum(-1).mean(1) # prio-buffer
|
|
# calculate fraction loss
|
|
with torch.no_grad():
|
|
sa_quantile_hats = curr_dist_orig[np.arange(len(act)), act, :]
|
|
sa_quantiles = out.quantiles_tau[np.arange(len(act)), act, :]
|
|
# ref: https://github.com/ku2482/fqf-iqn-qrdqn.pytorch/
|
|
# blob/master/fqf_iqn_qrdqn/agent/fqf_agent.py L169
|
|
values_1 = sa_quantiles - sa_quantile_hats[:, :-1]
|
|
signs_1 = sa_quantiles > torch.cat(
|
|
[sa_quantile_hats[:, :1], sa_quantiles[:, :-1]],
|
|
dim=1,
|
|
)
|
|
|
|
values_2 = sa_quantiles - sa_quantile_hats[:, 1:]
|
|
signs_2 = sa_quantiles < torch.cat(
|
|
[sa_quantiles[:, 1:], sa_quantile_hats[:, -1:]],
|
|
dim=1,
|
|
)
|
|
|
|
gradient_of_taus = torch.where(signs_1, values_1, -values_1) + torch.where(
|
|
signs_2,
|
|
values_2,
|
|
-values_2,
|
|
)
|
|
fraction_loss = (gradient_of_taus * taus[:, 1:-1]).sum(1).mean()
|
|
# calculate entropy loss
|
|
entropy_loss = out.fractions.entropies.mean()
|
|
fraction_entropy_loss = fraction_loss - self._ent_coef * entropy_loss
|
|
self._fraction_optim.zero_grad()
|
|
fraction_entropy_loss.backward(retain_graph=True)
|
|
self._fraction_optim.step()
|
|
self.optim.zero_grad()
|
|
quantile_loss.backward()
|
|
self.optim.step()
|
|
self._iter += 1
|
|
return {
|
|
"loss": quantile_loss.item() + fraction_entropy_loss.item(),
|
|
"loss/quantile": quantile_loss.item(),
|
|
"loss/fraction": fraction_loss.item(),
|
|
"loss/entropy": entropy_loss.item(),
|
|
}
|