Michael Panchenko 2cc34fb72b
Poetry install, remove gym, bump python (#925)
Closes #914 

Additional changes:

- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible

Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
2023-09-05 14:34:23 -07:00

157 lines
7.2 KiB
Python

import warnings
from collections.abc import Callable
from typing import Any
import torch
import torch.nn.functional as F
from torch.distributions import kl_divergence
from tianshou.data import Batch
from tianshou.policy import NPGPolicy
from tianshou.policy.modelfree.pg import TDistParams
class TRPOPolicy(NPGPolicy):
"""Implementation of Trust Region Policy Optimization. arXiv:1502.05477.
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.nn.Module critic: the critic network. (s -> V(s))
:param torch.optim.Optimizer optim: the optimizer for actor and critic network.
:param dist_fn: distribution class for computing the action.
:param bool advantage_normalization: whether to do per mini-batch advantage
normalization. Default to True.
:param int optim_critic_iters: Number of times to optimize critic network per
update. Default to 5.
:param int max_kl: max kl-divergence used to constrain each actor network update.
Default to 0.01.
:param float backtrack_coeff: Coefficient to be multiplied by step size when
constraints are not met. Default to 0.8.
:param int max_backtracks: Max number of backtracking times in linesearch. Default
to 10.
:param float gae_lambda: in [0, 1], param for Generalized Advantage Estimation.
Default to 0.95.
:param bool reward_normalization: normalize estimated values to have std close to
1. Default to False.
:param int max_batchsize: the maximum size of the batch when computing GAE,
depends on the size of available memory and the memory cost of the
model; should be as large as possible within the memory constraint.
Default to 256.
:param bool action_scaling: whether to map actions from range [-1, 1] to range
[action_spaces.low, action_spaces.high]. Default to True.
:param str action_bound_method: method to bound action to range [-1, 1], can be
either "clip" (for simply clipping the action), "tanh" (for applying tanh
squashing) for now, or empty string for no bounding. Default to "clip".
:param Optional[gym.Space] action_space: env's action space, mandatory if you want
to use option "action_scaling" or "action_bound_method". Default to None.
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
optimizer in each policy.update(). Default to None (no lr_scheduler).
:param bool deterministic_eval: whether to use deterministic action instead of
stochastic action sampled by the policy. Default to False.
"""
def __init__(
self,
actor: torch.nn.Module,
critic: torch.nn.Module,
optim: torch.optim.Optimizer,
dist_fn: Callable[[TDistParams], torch.distributions.Distribution],
max_kl: float = 0.01,
backtrack_coeff: float = 0.8,
max_backtracks: int = 10,
**kwargs: Any,
) -> None:
super().__init__(actor, critic, optim, dist_fn, **kwargs)
self._max_backtracks = max_backtracks
self._delta = max_kl
self._backtrack_coeff = backtrack_coeff
self._optim_critic_iters: int
def learn( # type: ignore
self,
batch: Batch,
batch_size: int,
repeat: int,
**kwargs: Any,
) -> dict[str, list[float]]:
actor_losses, vf_losses, step_sizes, kls = [], [], [], []
for _ in range(repeat):
for minibatch in batch.split(batch_size, merge_last=True):
# optimize actor
# direction: calculate villia gradient
dist = self(minibatch).dist # TODO could come from batch
ratio = (dist.log_prob(minibatch.act) - minibatch.logp_old).exp().float()
ratio = ratio.reshape(ratio.size(0), -1).transpose(0, 1)
actor_loss = -(ratio * minibatch.adv).mean()
flat_grads = self._get_flat_grad(actor_loss, self.actor, retain_graph=True).detach()
# direction: calculate natural gradient
with torch.no_grad():
old_dist = self(minibatch).dist
kl = kl_divergence(old_dist, dist).mean()
# calculate first order gradient of kl with respect to theta
flat_kl_grad = self._get_flat_grad(kl, self.actor, create_graph=True)
search_direction = -self._conjugate_gradients(flat_grads, flat_kl_grad, nsteps=10)
# stepsize: calculate max stepsize constrained by kl bound
step_size = torch.sqrt(
2
* self._delta
/ (search_direction * self._MVP(search_direction, flat_kl_grad)).sum(
0,
keepdim=True,
),
)
# stepsize: linesearch stepsize
with torch.no_grad():
flat_params = torch.cat(
[param.data.view(-1) for param in self.actor.parameters()],
)
for i in range(self._max_backtracks):
new_flat_params = flat_params + step_size * search_direction
self._set_from_flat_params(self.actor, new_flat_params)
# calculate kl and if in bound, loss actually down
new_dist = self(minibatch).dist
new_dratio = (
(new_dist.log_prob(minibatch.act) - minibatch.logp_old).exp().float()
)
new_dratio = new_dratio.reshape(new_dratio.size(0), -1).transpose(0, 1)
new_actor_loss = -(new_dratio * minibatch.adv).mean()
kl = kl_divergence(old_dist, new_dist).mean()
if kl < self._delta and new_actor_loss < actor_loss:
if i > 0:
warnings.warn(f"Backtracking to step {i}.")
break
if i < self._max_backtracks - 1:
step_size = step_size * self._backtrack_coeff
else:
self._set_from_flat_params(self.actor, new_flat_params)
step_size = torch.tensor([0.0])
warnings.warn(
"Line search failed! It seems hyperparamters"
" are poor and need to be changed.",
)
# optimize citirc
for _ in range(self._optim_critic_iters):
value = self.critic(minibatch.obs).flatten()
vf_loss = F.mse_loss(minibatch.returns, value)
self.optim.zero_grad()
vf_loss.backward()
self.optim.step()
actor_losses.append(actor_loss.item())
vf_losses.append(vf_loss.item())
step_sizes.append(step_size.item())
kls.append(kl.item())
return {
"loss/actor": actor_losses,
"loss/vf": vf_losses,
"step_size": step_sizes,
"kl": kls,
}