Closes #914 Additional changes: - Deprecate python below 11 - Remove 3rd party and throughput tests. This simplifies install and test pipeline - Remove gym compatibility and shimmy - Format with 3.11 conventions. In particular, add `zip(..., strict=True/False)` where possible Since the additional tests and gym were complicating the CI pipeline (flaky and dist-dependent), it didn't make sense to work on fixing the current tests in this PR to then just delete them in the next one. So this PR changes the build and removes these tests at the same time.
208 lines
8.3 KiB
Python
208 lines
8.3 KiB
Python
from typing import Any
|
|
|
|
import numpy as np
|
|
|
|
from tianshou.data import Batch, ReplayBuffer
|
|
from tianshou.data.batch import BatchProtocol
|
|
from tianshou.data.types import RolloutBatchProtocol
|
|
from tianshou.policy import BasePolicy
|
|
|
|
try:
|
|
from tianshou.env.pettingzoo_env import PettingZooEnv
|
|
except ImportError:
|
|
PettingZooEnv = None # type: ignore
|
|
|
|
|
|
class MultiAgentPolicyManager(BasePolicy):
|
|
"""Multi-agent policy manager for MARL.
|
|
|
|
This multi-agent policy manager accepts a list of
|
|
:class:`~tianshou.policy.BasePolicy`. It dispatches the batch data to each
|
|
of these policies when the "forward" is called. The same as "process_fn"
|
|
and "learn": it splits the data and feeds them to each policy. A figure in
|
|
:ref:`marl_example` can help you better understand this procedure.
|
|
"""
|
|
|
|
def __init__(self, policies: list[BasePolicy], env: PettingZooEnv, **kwargs: Any) -> None:
|
|
super().__init__(action_space=env.action_space, **kwargs)
|
|
assert len(policies) == len(env.agents), "One policy must be assigned for each agent."
|
|
|
|
self.agent_idx = env.agent_idx
|
|
for i, policy in enumerate(policies):
|
|
# agent_id 0 is reserved for the environment proxy
|
|
# (this MultiAgentPolicyManager)
|
|
policy.set_agent_id(env.agents[i])
|
|
|
|
self.policies = dict(zip(env.agents, policies, strict=True))
|
|
|
|
def replace_policy(self, policy: BasePolicy, agent_id: int) -> None:
|
|
"""Replace the "agent_id"th policy in this manager."""
|
|
policy.set_agent_id(agent_id)
|
|
self.policies[agent_id] = policy
|
|
|
|
# TODO: violates Liskov substitution principle
|
|
def process_fn( # type: ignore
|
|
self,
|
|
batch: RolloutBatchProtocol,
|
|
buffer: ReplayBuffer,
|
|
indice: np.ndarray,
|
|
) -> BatchProtocol:
|
|
"""Dispatch batch data from obs.agent_id to every policy's process_fn.
|
|
|
|
Save original multi-dimensional rew in "save_rew", set rew to the
|
|
reward of each agent during their "process_fn", and restore the
|
|
original reward afterwards.
|
|
"""
|
|
results = {}
|
|
assert isinstance(
|
|
batch.obs,
|
|
BatchProtocol,
|
|
), f"here only observations of type Batch are permitted, but got {type(batch.obs)}"
|
|
# reward can be empty Batch (after initial reset) or nparray.
|
|
has_rew = isinstance(buffer.rew, np.ndarray)
|
|
if has_rew: # save the original reward in save_rew
|
|
# Since we do not override buffer.__setattr__, here we use _meta to
|
|
# change buffer.rew, otherwise buffer.rew = Batch() has no effect.
|
|
save_rew, buffer._meta.rew = buffer.rew, Batch() # type: ignore
|
|
for agent, policy in self.policies.items():
|
|
agent_index = np.nonzero(batch.obs.agent_id == agent)[0]
|
|
if len(agent_index) == 0:
|
|
results[agent] = Batch()
|
|
continue
|
|
tmp_batch, tmp_indice = batch[agent_index], indice[agent_index]
|
|
if has_rew:
|
|
tmp_batch.rew = tmp_batch.rew[:, self.agent_idx[agent]]
|
|
buffer._meta.rew = save_rew[:, self.agent_idx[agent]]
|
|
if not hasattr(tmp_batch.obs, "mask"):
|
|
if hasattr(tmp_batch.obs, "obs"):
|
|
tmp_batch.obs = tmp_batch.obs.obs
|
|
if hasattr(tmp_batch.obs_next, "obs"):
|
|
tmp_batch.obs_next = tmp_batch.obs_next.obs
|
|
results[agent] = policy.process_fn(tmp_batch, buffer, tmp_indice)
|
|
if has_rew: # restore from save_rew
|
|
buffer._meta.rew = save_rew
|
|
return Batch(results)
|
|
|
|
def exploration_noise(
|
|
self,
|
|
act: np.ndarray | BatchProtocol,
|
|
batch: RolloutBatchProtocol,
|
|
) -> np.ndarray | BatchProtocol:
|
|
"""Add exploration noise from sub-policy onto act."""
|
|
assert isinstance(
|
|
batch.obs,
|
|
BatchProtocol,
|
|
), f"here only observations of type Batch are permitted, but got {type(batch.obs)}"
|
|
for agent_id, policy in self.policies.items():
|
|
agent_index = np.nonzero(batch.obs.agent_id == agent_id)[0]
|
|
if len(agent_index) == 0:
|
|
continue
|
|
act[agent_index] = policy.exploration_noise(act[agent_index], batch[agent_index])
|
|
return act
|
|
|
|
def forward( # type: ignore
|
|
self,
|
|
batch: Batch,
|
|
state: dict | Batch | None = None,
|
|
**kwargs: Any,
|
|
) -> Batch:
|
|
"""Dispatch batch data from obs.agent_id to every policy's forward.
|
|
|
|
:param state: if None, it means all agents have no state. If not
|
|
None, it should contain keys of "agent_1", "agent_2", ...
|
|
|
|
:return: a Batch with the following contents:
|
|
|
|
::
|
|
|
|
{
|
|
"act": actions corresponding to the input
|
|
"state": {
|
|
"agent_1": output state of agent_1's policy for the state
|
|
"agent_2": xxx
|
|
...
|
|
"agent_n": xxx}
|
|
"out": {
|
|
"agent_1": output of agent_1's policy for the input
|
|
"agent_2": xxx
|
|
...
|
|
"agent_n": xxx}
|
|
}
|
|
"""
|
|
results: list[tuple[bool, np.ndarray, Batch, np.ndarray | Batch, Batch]] = []
|
|
for agent_id, policy in self.policies.items():
|
|
# This part of code is difficult to understand.
|
|
# Let's follow an example with two agents
|
|
# batch.obs.agent_id is [1, 2, 1, 2, 1, 2] (with batch_size == 6)
|
|
# each agent plays for three transitions
|
|
# agent_index for agent 1 is [0, 2, 4]
|
|
# agent_index for agent 2 is [1, 3, 5]
|
|
# we separate the transition of each agent according to agent_id
|
|
agent_index = np.nonzero(batch.obs.agent_id == agent_id)[0]
|
|
if len(agent_index) == 0:
|
|
# (has_data, agent_index, out, act, state)
|
|
results.append((False, np.array([-1]), Batch(), Batch(), Batch()))
|
|
continue
|
|
tmp_batch = batch[agent_index]
|
|
if isinstance(tmp_batch.rew, np.ndarray):
|
|
# reward can be empty Batch (after initial reset) or nparray.
|
|
tmp_batch.rew = tmp_batch.rew[:, self.agent_idx[agent_id]]
|
|
if not hasattr(tmp_batch.obs, "mask"):
|
|
if hasattr(tmp_batch.obs, "obs"):
|
|
tmp_batch.obs = tmp_batch.obs.obs
|
|
if hasattr(tmp_batch.obs_next, "obs"):
|
|
tmp_batch.obs_next = tmp_batch.obs_next.obs
|
|
out = policy(
|
|
batch=tmp_batch,
|
|
state=None if state is None else state[agent_id],
|
|
**kwargs,
|
|
)
|
|
act = out.act
|
|
each_state = out.state if (hasattr(out, "state") and out.state is not None) else Batch()
|
|
results.append((True, agent_index, out, act, each_state))
|
|
holder: Batch = Batch.cat(
|
|
[{"act": act} for (has_data, agent_index, out, act, each_state) in results if has_data],
|
|
)
|
|
state_dict, out_dict = {}, {}
|
|
for (agent_id, _), (has_data, agent_index, out, act, state) in zip(
|
|
self.policies.items(),
|
|
results,
|
|
strict=True,
|
|
):
|
|
if has_data:
|
|
holder.act[agent_index] = act
|
|
state_dict[agent_id] = state
|
|
out_dict[agent_id] = out
|
|
holder["out"] = out_dict
|
|
holder["state"] = state_dict
|
|
return holder
|
|
|
|
def learn(
|
|
self,
|
|
batch: RolloutBatchProtocol,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> dict[str, float | list[float]]:
|
|
"""Dispatch the data to all policies for learning.
|
|
|
|
:return: a dict with the following contents:
|
|
|
|
::
|
|
|
|
{
|
|
"agent_1/item1": item 1 of agent_1's policy.learn output
|
|
"agent_1/item2": item 2 of agent_1's policy.learn output
|
|
"agent_2/xxx": xxx
|
|
...
|
|
"agent_n/xxx": xxx
|
|
}
|
|
"""
|
|
results = {}
|
|
for agent_id, policy in self.policies.items():
|
|
data = batch[agent_id]
|
|
if not data.is_empty():
|
|
out = policy.learn(batch=data, **kwargs)
|
|
for k, v in out.items():
|
|
results[agent_id + "/" + k] = v
|
|
return results
|