Michael Panchenko 2cc34fb72b
Poetry install, remove gym, bump python (#925)
Closes #914 

Additional changes:

- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible

Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
2023-09-05 14:34:23 -07:00

157 lines
5.9 KiB
Python

import argparse
import contextlib
import os
from collections.abc import Callable
from torch.utils.tensorboard import SummaryWriter
from tianshou.utils import BaseLogger, TensorboardLogger
from tianshou.utils.logger.base import LOG_DATA_TYPE
with contextlib.suppress(ImportError):
import wandb
class WandbLogger(BaseLogger):
"""Weights and Biases logger that sends data to https://wandb.ai/.
This logger creates three panels with plots: train, test, and update.
Make sure to select the correct access for each panel in weights and biases:
Example of usage:
::
logger = WandbLogger()
logger.load(SummaryWriter(log_path))
result = OnpolicyTrainer(policy, train_collector, test_collector,
logger=logger).run()
:param int train_interval: the log interval in log_train_data(). Default to 1000.
:param int test_interval: the log interval in log_test_data(). Default to 1.
:param int update_interval: the log interval in log_update_data().
Default to 1000.
:param int save_interval: the save interval in save_data(). Default to 1 (save at
the end of each epoch).
:param bool write_flush: whether to flush tensorboard result after each
add_scalar operation. Default to True.
:param str project: W&B project name. Default to "tianshou".
:param str name: W&B run name. Default to None. If None, random name is assigned.
:param str entity: W&B team/organization name. Default to None.
:param str run_id: run id of W&B run to be resumed. Default to None.
:param argparse.Namespace config: experiment configurations. Default to None.
"""
def __init__(
self,
train_interval: int = 1000,
test_interval: int = 1,
update_interval: int = 1000,
save_interval: int = 1000,
write_flush: bool = True,
project: str | None = None,
name: str | None = None,
entity: str | None = None,
run_id: str | None = None,
config: argparse.Namespace | None = None,
monitor_gym: bool = True,
) -> None:
super().__init__(train_interval, test_interval, update_interval)
self.last_save_step = -1
self.save_interval = save_interval
self.write_flush = write_flush
self.restored = False
if project is None:
project = os.getenv("WANDB_PROJECT", "tianshou")
self.wandb_run = (
wandb.init(
project=project,
name=name,
id=run_id,
resume="allow",
entity=entity,
sync_tensorboard=True,
monitor_gym=monitor_gym,
config=config, # type: ignore
)
if not wandb.run
else wandb.run
)
self.wandb_run._label(repo="tianshou") # type: ignore
self.tensorboard_logger: TensorboardLogger | None = None
def load(self, writer: SummaryWriter) -> None:
self.writer = writer
self.tensorboard_logger = TensorboardLogger(
writer,
self.train_interval,
self.test_interval,
self.update_interval,
self.save_interval,
self.write_flush,
)
def write(self, step_type: str, step: int, data: LOG_DATA_TYPE) -> None:
if self.tensorboard_logger is None:
raise Exception(
"`logger` needs to load the Tensorboard Writer before "
"writing data. Try `logger.load(SummaryWriter(log_path))`",
)
self.tensorboard_logger.write(step_type, step, data)
def save_data(
self,
epoch: int,
env_step: int,
gradient_step: int,
save_checkpoint_fn: Callable[[int, int, int], str] | None = None,
) -> None:
"""Use writer to log metadata when calling ``save_checkpoint_fn`` in trainer.
:param int epoch: the epoch in trainer.
:param int env_step: the env_step in trainer.
:param int gradient_step: the gradient_step in trainer.
:param function save_checkpoint_fn: a hook defined by user, see trainer
documentation for detail.
"""
if save_checkpoint_fn and epoch - self.last_save_step >= self.save_interval:
self.last_save_step = epoch
checkpoint_path = save_checkpoint_fn(epoch, env_step, gradient_step)
checkpoint_artifact = wandb.Artifact(
"run_" + self.wandb_run.id + "_checkpoint", # type: ignore
type="model",
metadata={
"save/epoch": epoch,
"save/env_step": env_step,
"save/gradient_step": gradient_step,
"checkpoint_path": str(checkpoint_path),
},
)
checkpoint_artifact.add_file(str(checkpoint_path))
self.wandb_run.log_artifact(checkpoint_artifact) # type: ignore
def restore_data(self) -> tuple[int, int, int]:
checkpoint_artifact = self.wandb_run.use_artifact( # type: ignore
f"run_{self.wandb_run.id}_checkpoint:latest", # type: ignore
)
assert checkpoint_artifact is not None, "W&B dataset artifact doesn't exist"
checkpoint_artifact.download(
os.path.dirname(checkpoint_artifact.metadata["checkpoint_path"]),
)
try: # epoch / gradient_step
epoch = checkpoint_artifact.metadata["save/epoch"]
self.last_save_step = self.last_log_test_step = epoch
gradient_step = checkpoint_artifact.metadata["save/gradient_step"]
self.last_log_update_step = gradient_step
except KeyError:
epoch, gradient_step = 0, 0
try: # offline trainer doesn't have env_step
env_step = checkpoint_artifact.metadata["save/env_step"]
self.last_log_train_step = env_step
except KeyError:
env_step = 0
return epoch, env_step, gradient_step