Tianshou/test/offline/test_gail.py
Erni bf0d632108
Naming and typing improvements in Actor/Critic/Policy forwards (#1032)
Closes #917 

### Internal Improvements
- Better variable names related to model outputs (logits, dist input
etc.). #1032
- Improved typing for actors and critics, using Tianshou classes like
`Actor`, `ActorProb`, etc.,
instead of just `nn.Module`. #1032
- Added interfaces for most `Actor` and `Critic` classes to enforce the
presence of `forward` methods. #1032
- Simplified `PGPolicy` forward by unifying the `dist_fn` interface (see
associated breaking change). #1032
- Use `.mode` of distribution instead of relying on knowledge of the
distribution type. #1032

### Breaking Changes

- Changed interface of `dist_fn` in `PGPolicy` and all subclasses to
take a single argument in both
continuous and discrete cases. #1032

---------

Co-authored-by: Arnau Jimenez <arnau.jimenez@zeiss.com>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2024-04-01 17:14:17 +02:00

237 lines
9.2 KiB
Python

import argparse
import os
import pickle
import pprint
import gymnasium as gym
import numpy as np
import torch
from torch.distributions import Distribution, Independent, Normal
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import BasePolicy, GAILPolicy
from tianshou.trainer import OnpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import ActorCritic, Net
from tianshou.utils.net.continuous import ActorProb, Critic
from tianshou.utils.space_info import SpaceInfo
if __name__ == "__main__":
from gather_pendulum_data import expert_file_name, gather_data
else: # pytest
from test.offline.gather_pendulum_data import expert_file_name, gather_data
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="Pendulum-v1")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--disc-lr", type=float, default=5e-4)
parser.add_argument("--gamma", type=float, default=0.95)
parser.add_argument("--epoch", type=int, default=5)
parser.add_argument("--step-per-epoch", type=int, default=150000)
parser.add_argument("--episode-per-collect", type=int, default=16)
parser.add_argument("--repeat-per-collect", type=int, default=2)
parser.add_argument("--disc-update-num", type=int, default=2)
parser.add_argument("--batch-size", type=int, default=128)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--training-num", type=int, default=16)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
# ppo special
parser.add_argument("--vf-coef", type=float, default=0.25)
parser.add_argument("--ent-coef", type=float, default=0.0)
parser.add_argument("--eps-clip", type=float, default=0.2)
parser.add_argument("--max-grad-norm", type=float, default=0.5)
parser.add_argument("--gae-lambda", type=float, default=0.95)
parser.add_argument("--rew-norm", type=int, default=1)
parser.add_argument("--dual-clip", type=float, default=None)
parser.add_argument("--value-clip", type=int, default=1)
parser.add_argument("--norm-adv", type=int, default=1)
parser.add_argument("--recompute-adv", type=int, default=0)
parser.add_argument("--resume", action="store_true")
parser.add_argument("--save-interval", type=int, default=4)
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
return parser.parse_known_args()[0]
def test_gail(args: argparse.Namespace = get_args()) -> None:
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
if args.load_buffer_name.endswith(".hdf5"):
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
else:
with open(args.load_buffer_name, "rb") as f:
buffer = pickle.load(f)
else:
buffer = gather_data()
env = gym.make(args.task)
if args.reward_threshold is None:
default_reward_threshold = {"Pendulum-v0": -1100, "Pendulum-v1": -1100}
args.reward_threshold = default_reward_threshold.get(
args.task,
env.spec.reward_threshold if env.spec else None,
)
space_info = SpaceInfo.from_env(env)
args.state_shape = space_info.observation_info.obs_shape
args.action_shape = space_info.action_info.action_shape
args.max_action = space_info.action_info.max_action
# you can also use tianshou.env.SubprocVectorEnv
# train_envs = gym.make(args.task)
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = ActorProb(net, args.action_shape, max_action=args.max_action, device=args.device).to(
args.device,
)
critic = Critic(
Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device),
device=args.device,
).to(args.device)
actor_critic = ActorCritic(actor, critic)
# orthogonal initialization
for m in actor_critic.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
# discriminator
disc_net = Critic(
Net(
args.state_shape,
action_shape=args.action_shape,
hidden_sizes=args.hidden_sizes,
activation=torch.nn.Tanh,
device=args.device,
concat=True,
),
device=args.device,
).to(args.device)
for m in disc_net.modules():
if isinstance(m, torch.nn.Linear):
# orthogonal initialization
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
torch.nn.init.zeros_(m.bias)
disc_optim = torch.optim.Adam(disc_net.parameters(), lr=args.disc_lr)
# replace DiagGuassian with Independent(Normal) which is equivalent
# pass *logits to be consistent with policy.forward
def dist(loc_scale: tuple[torch.Tensor, torch.Tensor]) -> Distribution:
loc, scale = loc_scale
return Independent(Normal(loc, scale), 1)
policy: BasePolicy = GAILPolicy(
actor=actor,
critic=critic,
optim=optim,
dist_fn=dist,
expert_buffer=buffer,
disc_net=disc_net,
disc_optim=disc_optim,
disc_update_num=args.disc_update_num,
discount_factor=args.gamma,
max_grad_norm=args.max_grad_norm,
eps_clip=args.eps_clip,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
reward_normalization=args.rew_norm,
advantage_normalization=args.norm_adv,
recompute_advantage=args.recompute_adv,
dual_clip=args.dual_clip,
value_clip=args.value_clip,
gae_lambda=args.gae_lambda,
action_space=env.action_space,
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
)
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, "gail")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer, save_interval=args.save_interval)
def save_best_fn(policy: BasePolicy) -> None:
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards: float) -> bool:
return mean_rewards >= args.reward_threshold
def save_checkpoint_fn(epoch: int, env_step: int, gradient_step: int) -> str:
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
ckpt_path = os.path.join(log_path, "checkpoint.pth")
# Example: saving by epoch num
# ckpt_path = os.path.join(log_path, f"checkpoint_{epoch}.pth")
torch.save(
{
"model": policy.state_dict(),
"optim": optim.state_dict(),
},
ckpt_path,
)
return ckpt_path
if args.resume:
# load from existing checkpoint
print(f"Loading agent under {log_path}")
ckpt_path = os.path.join(log_path, "checkpoint.pth")
if os.path.exists(ckpt_path):
checkpoint = torch.load(ckpt_path, map_location=args.device)
policy.load_state_dict(checkpoint["model"])
optim.load_state_dict(checkpoint["optim"])
print("Successfully restore policy and optim.")
else:
print("Fail to restore policy and optim.")
# trainer
result = OnpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
repeat_per_collect=args.repeat_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
episode_per_collect=args.episode_per_collect,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
resume_from_log=args.resume,
save_checkpoint_fn=save_checkpoint_fn,
).run()
assert stop_fn(result.best_reward)
if __name__ == "__main__":
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
collector_stats = collector.collect(n_episode=1, render=args.render)
print(collector_stats)
if __name__ == "__main__":
test_gail()