Tianshou/tianshou/policy/imitation/discrete_bcq.py
Erni bf0d632108
Naming and typing improvements in Actor/Critic/Policy forwards (#1032)
Closes #917 

### Internal Improvements
- Better variable names related to model outputs (logits, dist input
etc.). #1032
- Improved typing for actors and critics, using Tianshou classes like
`Actor`, `ActorProb`, etc.,
instead of just `nn.Module`. #1032
- Added interfaces for most `Actor` and `Critic` classes to enforce the
presence of `forward` methods. #1032
- Simplified `PGPolicy` forward by unifying the `dist_fn` interface (see
associated breaking change). #1032
- Use `.mode` of distribution instead of relying on knowledge of the
distribution type. #1032

### Breaking Changes

- Changed interface of `dist_fn` in `PGPolicy` and all subclasses to
take a single argument in both
continuous and discrete cases. #1032

---------

Co-authored-by: Arnau Jimenez <arnau.jimenez@zeiss.com>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2024-04-01 17:14:17 +02:00

180 lines
6.6 KiB
Python

import math
from dataclasses import dataclass
from typing import Any, Self, TypeVar, cast
import gymnasium as gym
import numpy as np
import torch
import torch.nn.functional as F
from tianshou.data import Batch, ReplayBuffer, to_torch
from tianshou.data.types import (
ImitationBatchProtocol,
ObsBatchProtocol,
RolloutBatchProtocol,
)
from tianshou.policy import DQNPolicy
from tianshou.policy.base import TLearningRateScheduler
from tianshou.policy.modelfree.dqn import DQNTrainingStats
float_info = torch.finfo(torch.float32)
INF = float_info.max
@dataclass(kw_only=True)
class DiscreteBCQTrainingStats(DQNTrainingStats):
q_loss: float
i_loss: float
reg_loss: float
TDiscreteBCQTrainingStats = TypeVar("TDiscreteBCQTrainingStats", bound=DiscreteBCQTrainingStats)
class DiscreteBCQPolicy(DQNPolicy[TDiscreteBCQTrainingStats]):
"""Implementation of discrete BCQ algorithm. arXiv:1910.01708.
:param model: a model following the rules (s_B -> action_values_BA)
:param imitator: a model following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> imitation_logits)
:param optim: a torch.optim for optimizing the model.
:param discount_factor: in [0, 1].
:param estimation_step: the number of steps to look ahead
:param target_update_freq: the target network update frequency.
:param eval_eps: the epsilon-greedy noise added in evaluation.
:param unlikely_action_threshold: the threshold (tau) for unlikely
actions, as shown in Equ. (17) in the paper.
:param imitation_logits_penalty: regularization weight for imitation
logits.
:param estimation_step: the number of steps to look ahead.
:param target_update_freq: the target network update frequency (0 if
you do not use the target network).
:param reward_normalization: normalize the **returns** to Normal(0, 1).
TODO: rename to return_normalization?
:param is_double: use double dqn.
:param clip_loss_grad: clip the gradient of the loss in accordance
with nature14236; this amounts to using the Huber loss instead of
the MSE loss.
:param observation_space: Env's observation space.
:param lr_scheduler: if not None, will be called in `policy.update()`.
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
*,
model: torch.nn.Module,
imitator: torch.nn.Module,
optim: torch.optim.Optimizer,
action_space: gym.spaces.Discrete,
discount_factor: float = 0.99,
estimation_step: int = 1,
target_update_freq: int = 8000,
eval_eps: float = 1e-3,
unlikely_action_threshold: float = 0.3,
imitation_logits_penalty: float = 1e-2,
reward_normalization: bool = False,
is_double: bool = True,
clip_loss_grad: bool = False,
observation_space: gym.Space | None = None,
lr_scheduler: TLearningRateScheduler | None = None,
) -> None:
super().__init__(
model=model,
optim=optim,
action_space=action_space,
discount_factor=discount_factor,
estimation_step=estimation_step,
target_update_freq=target_update_freq,
reward_normalization=reward_normalization,
is_double=is_double,
clip_loss_grad=clip_loss_grad,
observation_space=observation_space,
lr_scheduler=lr_scheduler,
)
assert (
target_update_freq > 0
), f"BCQ needs target_update_freq>0 but got: {target_update_freq}."
self.imitator = imitator
assert (
0.0 <= unlikely_action_threshold < 1.0
), f"unlikely_action_threshold should be in [0, 1) but got: {unlikely_action_threshold}"
if unlikely_action_threshold > 0:
self._log_tau = math.log(unlikely_action_threshold)
else:
self._log_tau = -np.inf
assert 0.0 <= eval_eps < 1.0
self.eps = eval_eps
self._weight_reg = imitation_logits_penalty
def train(self, mode: bool = True) -> Self:
self.training = mode
self.model.train(mode)
self.imitator.train(mode)
return self
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor:
batch = buffer[indices] # batch.obs_next: s_{t+n}
next_obs_batch = Batch(obs=batch.obs_next, info=[None] * len(batch))
# target_Q = Q_old(s_, argmax(Q_new(s_, *)))
act = self(next_obs_batch).act
target_q, _ = self.model_old(batch.obs_next)
return target_q[np.arange(len(act)), act]
def forward( # type: ignore
self,
batch: ObsBatchProtocol,
state: dict | Batch | np.ndarray | None = None,
**kwargs: Any,
) -> ImitationBatchProtocol:
# TODO: Liskov substitution principle is violated here, the superclass
# produces a batch with the field logits, but this one doesn't.
# Should be fixed in the future!
q_value, state = self.model(batch.obs, state=state, info=batch.info)
if self.max_action_num is None:
self.max_action_num = q_value.shape[1]
imitation_logits, _ = self.imitator(batch.obs, state=state, info=batch.info)
# mask actions for argmax
ratio = imitation_logits - imitation_logits.max(dim=-1, keepdim=True).values
mask = (ratio < self._log_tau).float()
act = (q_value - INF * mask).argmax(dim=-1)
result = Batch(act=act, state=state, q_value=q_value, imitation_logits=imitation_logits)
return cast(ImitationBatchProtocol, result)
def learn(
self,
batch: RolloutBatchProtocol,
*args: Any,
**kwargs: Any,
) -> TDiscreteBCQTrainingStats:
if self._iter % self.freq == 0:
self.sync_weight()
self._iter += 1
target_q = batch.returns.flatten()
result = self(batch)
imitation_logits = result.imitation_logits
current_q = result.q_value[np.arange(len(target_q)), batch.act]
act = to_torch(batch.act, dtype=torch.long, device=target_q.device)
q_loss = F.smooth_l1_loss(current_q, target_q)
i_loss = F.nll_loss(F.log_softmax(imitation_logits, dim=-1), act)
reg_loss = imitation_logits.pow(2).mean()
loss = q_loss + i_loss + self._weight_reg * reg_loss
self.optim.zero_grad()
loss.backward()
self.optim.step()
return DiscreteBCQTrainingStats( # type: ignore[return-value]
loss=loss.item(),
q_loss=q_loss.item(),
i_loss=i_loss.item(),
reg_loss=reg_loss.item(),
)