Addresses part of #1015 ### Dependencies - move jsonargparse and docstring-parser to dependencies to run hl examples without dev - create mujoco-py extra for legacy mujoco envs - updated atari extra - removed atari-py and gym dependencies - added ALE-py, autorom, and shimmy - created robotics extra for HER-DDPG ### Mac specific - only install envpool when not on mac - mujoco-py not working on macOS newer than Monterey (https://github.com/openai/mujoco-py/issues/777) - D4RL also fails due to dependency on mujoco-py (https://github.com/Farama-Foundation/D4RL/issues/232) ### Other - reduced training-num/test-num in example files to a number ≤ 20 (examples with 100 led to too many open files) - rendering for Mujoco envs needs to be fixed on gymnasium side (https://github.com/Farama-Foundation/Gymnasium/issues/749) --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <35432522+MischaPanch@users.noreply.github.com>
		
			
				
	
	
		
			150 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			150 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import os
 | |
| import pprint
 | |
| 
 | |
| import gymnasium as gym
 | |
| import numpy as np
 | |
| import torch
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from tianshou.data import Collector, VectorReplayBuffer
 | |
| from tianshou.env import DummyVectorEnv, SubprocVectorEnv
 | |
| from tianshou.policy import DQNPolicy
 | |
| from tianshou.policy.base import BasePolicy
 | |
| from tianshou.trainer import OffpolicyTrainer
 | |
| from tianshou.utils import TensorboardLogger
 | |
| from tianshou.utils.net.common import Net
 | |
| 
 | |
| 
 | |
| def get_args() -> argparse.Namespace:
 | |
|     parser = argparse.ArgumentParser()
 | |
|     # the parameters are found by Optuna
 | |
|     parser.add_argument("--task", type=str, default="LunarLander-v2")
 | |
|     parser.add_argument("--seed", type=int, default=0)
 | |
|     parser.add_argument("--eps-test", type=float, default=0.01)
 | |
|     parser.add_argument("--eps-train", type=float, default=0.73)
 | |
|     parser.add_argument("--buffer-size", type=int, default=100000)
 | |
|     parser.add_argument("--lr", type=float, default=0.013)
 | |
|     parser.add_argument("--gamma", type=float, default=0.99)
 | |
|     parser.add_argument("--n-step", type=int, default=4)
 | |
|     parser.add_argument("--target-update-freq", type=int, default=500)
 | |
|     parser.add_argument("--epoch", type=int, default=10)
 | |
|     parser.add_argument("--step-per-epoch", type=int, default=80000)
 | |
|     parser.add_argument("--step-per-collect", type=int, default=16)
 | |
|     parser.add_argument("--update-per-step", type=float, default=0.0625)
 | |
|     parser.add_argument("--batch-size", type=int, default=128)
 | |
|     parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128, 128])
 | |
|     parser.add_argument("--dueling-q-hidden-sizes", type=int, nargs="*", default=[128, 128])
 | |
|     parser.add_argument("--dueling-v-hidden-sizes", type=int, nargs="*", default=[128, 128])
 | |
|     parser.add_argument("--training-num", type=int, default=16)
 | |
|     parser.add_argument("--test-num", type=int, default=10)
 | |
|     parser.add_argument("--logdir", type=str, default="log")
 | |
|     parser.add_argument("--render", type=float, default=0.0)
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default="cuda" if torch.cuda.is_available() else "cpu",
 | |
|     )
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| def test_dqn(args: argparse.Namespace = get_args()) -> None:
 | |
|     env = gym.make(args.task)
 | |
|     args.state_shape = env.observation_space.shape or env.observation_space.n
 | |
|     args.action_shape = env.action_space.shape or env.action_space.n
 | |
|     args.max_action = env.action_space.high[0]
 | |
|     # train_envs = gym.make(args.task)
 | |
|     # you can also use tianshou.env.SubprocVectorEnv
 | |
|     train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
 | |
|     # test_envs = gym.make(args.task)
 | |
|     test_envs = SubprocVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     train_envs.seed(args.seed)
 | |
|     test_envs.seed(args.seed)
 | |
|     # model
 | |
|     Q_param = {"hidden_sizes": args.dueling_q_hidden_sizes}
 | |
|     V_param = {"hidden_sizes": args.dueling_v_hidden_sizes}
 | |
|     net = Net(
 | |
|         args.state_shape,
 | |
|         args.action_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         device=args.device,
 | |
|         dueling_param=(Q_param, V_param),
 | |
|     ).to(args.device)
 | |
|     optim = torch.optim.Adam(net.parameters(), lr=args.lr)
 | |
|     policy: DQNPolicy = DQNPolicy(
 | |
|         model=net,
 | |
|         optim=optim,
 | |
|         action_space=env.action_space,
 | |
|         discount_factor=args.gamma,
 | |
|         estimation_step=args.n_step,
 | |
|         target_update_freq=args.target_update_freq,
 | |
|     )
 | |
|     # collector
 | |
|     train_collector = Collector(
 | |
|         policy,
 | |
|         train_envs,
 | |
|         VectorReplayBuffer(args.buffer_size, len(train_envs)),
 | |
|         exploration_noise=True,
 | |
|     )
 | |
|     test_collector = Collector(policy, test_envs, exploration_noise=True)
 | |
|     # policy.set_eps(1)
 | |
|     train_collector.collect(n_step=args.batch_size * args.training_num)
 | |
|     # log
 | |
|     log_path = os.path.join(args.logdir, args.task, "dqn")
 | |
|     writer = SummaryWriter(log_path)
 | |
|     logger = TensorboardLogger(writer)
 | |
| 
 | |
|     def save_best_fn(policy: BasePolicy) -> None:
 | |
|         torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
 | |
| 
 | |
|     def stop_fn(mean_rewards: float) -> bool:
 | |
|         if env.spec:
 | |
|             if not env.spec.reward_threshold:
 | |
|                 return False
 | |
|             else:
 | |
|                 return mean_rewards >= env.spec.reward_threshold
 | |
|         return False
 | |
| 
 | |
|     def train_fn(epoch: int, env_step: int) -> None:  # exp decay
 | |
|         eps = max(args.eps_train * (1 - 5e-6) ** env_step, args.eps_test)
 | |
|         policy.set_eps(eps)
 | |
| 
 | |
|     def test_fn(epoch: int, env_step: int | None) -> None:
 | |
|         policy.set_eps(args.eps_test)
 | |
| 
 | |
|     # trainer
 | |
|     result = OffpolicyTrainer(
 | |
|         policy=policy,
 | |
|         train_collector=train_collector,
 | |
|         test_collector=test_collector,
 | |
|         max_epoch=args.epoch,
 | |
|         step_per_epoch=args.step_per_epoch,
 | |
|         step_per_collect=args.step_per_collect,
 | |
|         episode_per_test=args.test_num,
 | |
|         batch_size=args.batch_size,
 | |
|         update_per_step=args.update_per_step,
 | |
|         stop_fn=stop_fn,
 | |
|         train_fn=train_fn,
 | |
|         test_fn=test_fn,
 | |
|         save_best_fn=save_best_fn,
 | |
|         logger=logger,
 | |
|     ).run()
 | |
| 
 | |
|     assert stop_fn(result.best_reward)
 | |
|     if __name__ == "__main__":
 | |
|         pprint.pprint(result)
 | |
|         # Let's watch its performance!
 | |
|         policy.eval()
 | |
|         policy.set_eps(args.eps_test)
 | |
|         test_envs.seed(args.seed)
 | |
|         test_collector.reset()
 | |
|         collector_stats = test_collector.collect(n_episode=args.test_num, render=args.render)
 | |
|         print(collector_stats)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_dqn(get_args())
 |