Improves typing in examples and tests, towards mypy passing there. Introduces the SpaceInfo utility
		
			
				
	
	
		
			191 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			191 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import argparse
 | |
| import datetime
 | |
| import os
 | |
| import pickle
 | |
| import pprint
 | |
| import sys
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| 
 | |
| from examples.atari.atari_network import QRDQN
 | |
| from examples.atari.atari_wrapper import make_atari_env
 | |
| from examples.common import logger_factory
 | |
| from examples.offline.utils import load_buffer
 | |
| from tianshou.data import Collector, VectorReplayBuffer
 | |
| from tianshou.policy import DiscreteCQLPolicy
 | |
| from tianshou.policy.base import BasePolicy
 | |
| from tianshou.trainer import OfflineTrainer
 | |
| 
 | |
| 
 | |
| def get_args() -> argparse.Namespace:
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("--task", type=str, default="PongNoFrameskip-v4")
 | |
|     parser.add_argument("--seed", type=int, default=1626)
 | |
|     parser.add_argument("--eps-test", type=float, default=0.001)
 | |
|     parser.add_argument("--lr", type=float, default=0.0001)
 | |
|     parser.add_argument("--gamma", type=float, default=0.99)
 | |
|     parser.add_argument("--num-quantiles", type=int, default=200)
 | |
|     parser.add_argument("--n-step", type=int, default=1)
 | |
|     parser.add_argument("--target-update-freq", type=int, default=500)
 | |
|     parser.add_argument("--min-q-weight", type=float, default=10.0)
 | |
|     parser.add_argument("--epoch", type=int, default=100)
 | |
|     parser.add_argument("--update-per-epoch", type=int, default=10000)
 | |
|     parser.add_argument("--batch-size", type=int, default=32)
 | |
|     parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[512])
 | |
|     parser.add_argument("--test-num", type=int, default=10)
 | |
|     parser.add_argument("--frames-stack", type=int, default=4)
 | |
|     parser.add_argument("--scale-obs", type=int, default=0)
 | |
|     parser.add_argument("--logdir", type=str, default="log")
 | |
|     parser.add_argument("--render", type=float, default=0.0)
 | |
|     parser.add_argument("--resume-path", type=str, default=None)
 | |
|     parser.add_argument("--resume-id", type=str, default=None)
 | |
|     parser.add_argument(
 | |
|         "--logger",
 | |
|         type=str,
 | |
|         default="tensorboard",
 | |
|         choices=["tensorboard", "wandb"],
 | |
|     )
 | |
|     parser.add_argument("--wandb-project", type=str, default="offline_atari.benchmark")
 | |
|     parser.add_argument(
 | |
|         "--watch",
 | |
|         default=False,
 | |
|         action="store_true",
 | |
|         help="watch the play of pre-trained policy only",
 | |
|     )
 | |
|     parser.add_argument("--log-interval", type=int, default=100)
 | |
|     parser.add_argument(
 | |
|         "--load-buffer-name",
 | |
|         type=str,
 | |
|         default="./expert_DQN_PongNoFrameskip-v4.hdf5",
 | |
|     )
 | |
|     parser.add_argument("--buffer-from-rl-unplugged", action="store_true", default=False)
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default="cuda" if torch.cuda.is_available() else "cpu",
 | |
|     )
 | |
|     return parser.parse_known_args()[0]
 | |
| 
 | |
| 
 | |
| def test_discrete_cql(args: argparse.Namespace = get_args()) -> None:
 | |
|     # envs
 | |
|     env, _, test_envs = make_atari_env(
 | |
|         args.task,
 | |
|         args.seed,
 | |
|         1,
 | |
|         args.test_num,
 | |
|         scale=args.scale_obs,
 | |
|         frame_stack=args.frames_stack,
 | |
|     )
 | |
|     args.state_shape = env.observation_space.shape or env.observation_space.n
 | |
|     args.action_shape = env.action_space.shape or env.action_space.n
 | |
|     # should be N_FRAMES x H x W
 | |
|     print("Observations shape:", args.state_shape)
 | |
|     print("Actions shape:", args.action_shape)
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     # model
 | |
|     net = QRDQN(*args.state_shape, args.action_shape, args.num_quantiles, args.device)
 | |
|     optim = torch.optim.Adam(net.parameters(), lr=args.lr)
 | |
|     # define policy
 | |
|     policy: DiscreteCQLPolicy = DiscreteCQLPolicy(
 | |
|         model=net,
 | |
|         optim=optim,
 | |
|         action_space=env.action_space,
 | |
|         discount_factor=args.gamma,
 | |
|         num_quantiles=args.num_quantiles,
 | |
|         estimation_step=args.n_step,
 | |
|         target_update_freq=args.target_update_freq,
 | |
|         min_q_weight=args.min_q_weight,
 | |
|     ).to(args.device)
 | |
|     # load a previous policy
 | |
|     if args.resume_path:
 | |
|         policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
 | |
|         print("Loaded agent from: ", args.resume_path)
 | |
|     # buffer
 | |
|     if args.buffer_from_rl_unplugged:
 | |
|         buffer = load_buffer(args.load_buffer_name)
 | |
|     else:
 | |
|         assert os.path.exists(
 | |
|             args.load_buffer_name,
 | |
|         ), "Please run atari_dqn.py first to get expert's data buffer."
 | |
|         if args.load_buffer_name.endswith(".pkl"):
 | |
|             with open(args.load_buffer_name, "rb") as f:
 | |
|                 buffer = pickle.load(f)
 | |
|         elif args.load_buffer_name.endswith(".hdf5"):
 | |
|             buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
 | |
|         else:
 | |
|             print(f"Unknown buffer format: {args.load_buffer_name}")
 | |
|             sys.exit(0)
 | |
|     print("Replay buffer size:", len(buffer), flush=True)
 | |
| 
 | |
|     # collector
 | |
|     test_collector = Collector(policy, test_envs, exploration_noise=True)
 | |
| 
 | |
|     # log
 | |
|     now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
 | |
|     args.algo_name = "cql"
 | |
|     log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
 | |
|     log_path = os.path.join(args.logdir, log_name)
 | |
| 
 | |
|     # logger
 | |
|     if args.logger == "wandb":
 | |
|         logger_factory.logger_type = "wandb"
 | |
|         logger_factory.wandb_project = args.wandb_project
 | |
|     else:
 | |
|         logger_factory.logger_type = "tensorboard"
 | |
| 
 | |
|     logger = logger_factory.create_logger(
 | |
|         log_dir=log_path,
 | |
|         experiment_name=log_name,
 | |
|         run_id=args.resume_id,
 | |
|         config_dict=vars(args),
 | |
|     )
 | |
| 
 | |
|     def save_best_fn(policy: BasePolicy) -> None:
 | |
|         torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
 | |
| 
 | |
|     def stop_fn(mean_rewards: float) -> bool:
 | |
|         return False
 | |
| 
 | |
|     # watch agent's performance
 | |
|     def watch() -> None:
 | |
|         print("Setup test envs ...")
 | |
|         policy.eval()
 | |
|         policy.set_eps(args.eps_test)
 | |
|         test_envs.seed(args.seed)
 | |
|         print("Testing agent ...")
 | |
|         test_collector.reset()
 | |
|         result = test_collector.collect(n_episode=args.test_num, render=args.render)
 | |
|         pprint.pprint(result)
 | |
|         rew = result.returns_stat.mean
 | |
|         print(f"Mean reward (over {result.n_collected_episodes} episodes): {rew}")
 | |
| 
 | |
|     if args.watch:
 | |
|         watch()
 | |
|         sys.exit(0)
 | |
| 
 | |
|     result = OfflineTrainer(
 | |
|         policy=policy,
 | |
|         buffer=buffer,
 | |
|         test_collector=test_collector,
 | |
|         max_epoch=args.epoch,
 | |
|         step_per_epoch=args.update_per_epoch,
 | |
|         episode_per_test=args.test_num,
 | |
|         batch_size=args.batch_size,
 | |
|         stop_fn=stop_fn,
 | |
|         save_best_fn=save_best_fn,
 | |
|         logger=logger,
 | |
|     ).run()
 | |
| 
 | |
|     pprint.pprint(result)
 | |
|     watch()
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_discrete_cql(get_args())
 |