Improves typing in examples and tests, towards mypy passing there. Introduces the SpaceInfo utility
		
			
				
	
	
		
			241 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			241 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python3
 | |
| 
 | |
| import argparse
 | |
| import datetime
 | |
| import os
 | |
| import pprint
 | |
| 
 | |
| import gymnasium as gym
 | |
| import numpy as np
 | |
| import torch
 | |
| from torch.utils.tensorboard import SummaryWriter
 | |
| 
 | |
| from examples.offline.utils import load_buffer_d4rl
 | |
| from tianshou.data import Collector
 | |
| from tianshou.env import SubprocVectorEnv
 | |
| from tianshou.policy import BCQPolicy
 | |
| from tianshou.policy.base import BasePolicy
 | |
| from tianshou.trainer import OfflineTrainer
 | |
| from tianshou.utils import TensorboardLogger, WandbLogger
 | |
| from tianshou.utils.net.common import MLP, Net
 | |
| from tianshou.utils.net.continuous import VAE, Critic, Perturbation
 | |
| from tianshou.utils.space_info import SpaceInfo
 | |
| 
 | |
| 
 | |
| def get_args() -> argparse.Namespace:
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("--task", type=str, default="HalfCheetah-v2")
 | |
|     parser.add_argument("--seed", type=int, default=0)
 | |
|     parser.add_argument("--expert-data-task", type=str, default="halfcheetah-expert-v2")
 | |
|     parser.add_argument("--buffer-size", type=int, default=1000000)
 | |
|     parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[256, 256])
 | |
|     parser.add_argument("--actor-lr", type=float, default=1e-3)
 | |
|     parser.add_argument("--critic-lr", type=float, default=1e-3)
 | |
|     parser.add_argument("--start-timesteps", type=int, default=10000)
 | |
|     parser.add_argument("--epoch", type=int, default=200)
 | |
|     parser.add_argument("--step-per-epoch", type=int, default=5000)
 | |
|     parser.add_argument("--n-step", type=int, default=3)
 | |
|     parser.add_argument("--batch-size", type=int, default=256)
 | |
|     parser.add_argument("--test-num", type=int, default=10)
 | |
|     parser.add_argument("--logdir", type=str, default="log")
 | |
|     parser.add_argument("--render", type=float, default=1 / 35)
 | |
| 
 | |
|     parser.add_argument("--vae-hidden-sizes", type=int, nargs="*", default=[512, 512])
 | |
|     # default to 2 * action_dim
 | |
|     parser.add_argument("--latent-dim", type=int)
 | |
|     parser.add_argument("--gamma", default=0.99)
 | |
|     parser.add_argument("--tau", default=0.005)
 | |
|     # Weighting for Clipped Double Q-learning in BCQ
 | |
|     parser.add_argument("--lmbda", default=0.75)
 | |
|     # Max perturbation hyper-parameter for BCQ
 | |
|     parser.add_argument("--phi", default=0.05)
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         type=str,
 | |
|         default="cuda" if torch.cuda.is_available() else "cpu",
 | |
|     )
 | |
|     parser.add_argument("--resume-path", type=str, default=None)
 | |
|     parser.add_argument("--resume-id", type=str, default=None)
 | |
|     parser.add_argument(
 | |
|         "--logger",
 | |
|         type=str,
 | |
|         default="tensorboard",
 | |
|         choices=["tensorboard", "wandb"],
 | |
|     )
 | |
|     parser.add_argument("--wandb-project", type=str, default="offline_d4rl.benchmark")
 | |
|     parser.add_argument(
 | |
|         "--watch",
 | |
|         default=False,
 | |
|         action="store_true",
 | |
|         help="watch the play of pre-trained policy only",
 | |
|     )
 | |
|     return parser.parse_args()
 | |
| 
 | |
| 
 | |
| def test_bcq() -> None:
 | |
|     args = get_args()
 | |
|     env = gym.make(args.task)
 | |
|     space_info = SpaceInfo.from_env(env)
 | |
|     args.state_shape = space_info.observation_info.obs_shape
 | |
|     args.action_shape = space_info.action_info.action_shape
 | |
|     args.max_action = space_info.action_info.max_action
 | |
|     print("device:", args.device)
 | |
|     print("Observations shape:", args.state_shape)
 | |
|     print("Actions shape:", args.action_shape)
 | |
|     print("Action range:", args.min_action, args.max_action)
 | |
| 
 | |
|     args.state_dim = space_info.observation_info.obs_dim
 | |
|     args.action_dim = space_info.action_info.action_dim
 | |
|     print("Max_action", args.max_action)
 | |
| 
 | |
|     # test_envs = gym.make(args.task)
 | |
|     test_envs = SubprocVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
 | |
|     # seed
 | |
|     np.random.seed(args.seed)
 | |
|     torch.manual_seed(args.seed)
 | |
|     test_envs.seed(args.seed)
 | |
| 
 | |
|     # model
 | |
|     # perturbation network
 | |
|     net_a = MLP(
 | |
|         input_dim=args.state_dim + args.action_dim,
 | |
|         output_dim=args.action_dim,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         device=args.device,
 | |
|     )
 | |
|     actor = Perturbation(net_a, max_action=args.max_action, device=args.device, phi=args.phi).to(
 | |
|         args.device,
 | |
|     )
 | |
|     actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
 | |
| 
 | |
|     net_c1 = Net(
 | |
|         args.state_shape,
 | |
|         args.action_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         concat=True,
 | |
|         device=args.device,
 | |
|     )
 | |
|     net_c2 = Net(
 | |
|         args.state_shape,
 | |
|         args.action_shape,
 | |
|         hidden_sizes=args.hidden_sizes,
 | |
|         concat=True,
 | |
|         device=args.device,
 | |
|     )
 | |
|     critic1 = Critic(net_c1, device=args.device).to(args.device)
 | |
|     critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
 | |
|     critic2 = Critic(net_c2, device=args.device).to(args.device)
 | |
|     critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
 | |
| 
 | |
|     # vae
 | |
|     # output_dim = 0, so the last Module in the encoder is ReLU
 | |
|     vae_encoder = MLP(
 | |
|         input_dim=args.state_dim + args.action_dim,
 | |
|         hidden_sizes=args.vae_hidden_sizes,
 | |
|         device=args.device,
 | |
|     )
 | |
|     if not args.latent_dim:
 | |
|         args.latent_dim = args.action_dim * 2
 | |
|     vae_decoder = MLP(
 | |
|         input_dim=args.state_dim + args.latent_dim,
 | |
|         output_dim=args.action_dim,
 | |
|         hidden_sizes=args.vae_hidden_sizes,
 | |
|         device=args.device,
 | |
|     )
 | |
|     vae = VAE(
 | |
|         vae_encoder,
 | |
|         vae_decoder,
 | |
|         hidden_dim=args.vae_hidden_sizes[-1],
 | |
|         latent_dim=args.latent_dim,
 | |
|         max_action=args.max_action,
 | |
|         device=args.device,
 | |
|     ).to(args.device)
 | |
|     vae_optim = torch.optim.Adam(vae.parameters())
 | |
| 
 | |
|     policy: BCQPolicy = BCQPolicy(
 | |
|         actor_perturbation=actor,
 | |
|         actor_perturbation_optim=actor_optim,
 | |
|         critic=critic1,
 | |
|         critic_optim=critic1_optim,
 | |
|         action_space=env.action_space,
 | |
|         critic2=critic2,
 | |
|         critic2_optim=critic2_optim,
 | |
|         vae=vae,
 | |
|         vae_optim=vae_optim,
 | |
|         device=args.device,
 | |
|         gamma=args.gamma,
 | |
|         tau=args.tau,
 | |
|         lmbda=args.lmbda,
 | |
|     )
 | |
| 
 | |
|     # load a previous policy
 | |
|     if args.resume_path:
 | |
|         policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
 | |
|         print("Loaded agent from: ", args.resume_path)
 | |
| 
 | |
|     # collector
 | |
|     test_collector = Collector(policy, test_envs)
 | |
| 
 | |
|     # log
 | |
|     now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
 | |
|     args.algo_name = "bcq"
 | |
|     log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
 | |
|     log_path = os.path.join(args.logdir, log_name)
 | |
| 
 | |
|     # logger
 | |
|     writer = SummaryWriter(log_path)
 | |
|     writer.add_text("args", str(args))
 | |
|     logger: WandbLogger | TensorboardLogger
 | |
|     if args.logger == "tensorboard":
 | |
|         logger = TensorboardLogger(writer)
 | |
|     else:
 | |
|         logger = WandbLogger(
 | |
|             save_interval=1,
 | |
|             name=log_name.replace(os.path.sep, "__"),
 | |
|             run_id=args.resume_id,
 | |
|             config=args,
 | |
|             project=args.wandb_project,
 | |
|         )
 | |
|         logger.load(writer)
 | |
| 
 | |
|     def save_best_fn(policy: BasePolicy) -> None:
 | |
|         torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
 | |
| 
 | |
|     def watch() -> None:
 | |
|         if args.resume_path is None:
 | |
|             args.resume_path = os.path.join(log_path, "policy.pth")
 | |
| 
 | |
|         policy.load_state_dict(torch.load(args.resume_path, map_location=torch.device("cpu")))
 | |
|         policy.eval()
 | |
|         collector = Collector(policy, env)
 | |
|         collector.collect(n_episode=1, render=1 / 35)
 | |
| 
 | |
|     if not args.watch:
 | |
|         replay_buffer = load_buffer_d4rl(args.expert_data_task)
 | |
|         # trainer
 | |
|         result = OfflineTrainer(
 | |
|             policy=policy,
 | |
|             buffer=replay_buffer,
 | |
|             test_collector=test_collector,
 | |
|             max_epoch=args.epoch,
 | |
|             step_per_epoch=args.step_per_epoch,
 | |
|             episode_per_test=args.test_num,
 | |
|             batch_size=args.batch_size,
 | |
|             save_best_fn=save_best_fn,
 | |
|             logger=logger,
 | |
|         ).run()
 | |
|         pprint.pprint(result)
 | |
|     else:
 | |
|         watch()
 | |
| 
 | |
|     # Let's watch its performance!
 | |
|     policy.eval()
 | |
|     test_envs.seed(args.seed)
 | |
|     test_collector.reset()
 | |
|     collector_stats = test_collector.collect(n_episode=args.test_num, render=args.render)
 | |
|     print(collector_stats)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_bcq()
 |