* Enable converting list/tuple back and forth from/to numpy/torch. * Add fallbacks. * Fix PEP8 * Update unit tests. * Type annotation. Robust dtype check. * List of object are converted individually, as a single tensor otherwise. * Improve robustness of _to_array_with_correct_type * Add unit tests. * Do not catch exception at _to_array_with_correct_type level. * Use _parse_value * Fix PEP8 * Fix _parse_value list output type fallback. * Catch torch exception. * Do not convert torch tensor during fallback. * Improve unit tests. * Add unit tests. * FIx missing import * Remove support of numpy arrays of tensors for Batch value parser. * Forbid numpy arrays of tensors. * Fix PEP8. * Fix comment. * Reduce _parse_value branch number. * Fix None value. * Forward error message for debugging purpose. * Fix _is_scalar. * More specific try/catch blocks. * Fix exception chaining. * Fix PEP8. * Fix _is_scalar. * Fix missing corner case. * Fix PEP8. * Allow Batch empty key. * Fix multi-dim array datatype check. Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
70 lines
2.3 KiB
Python
70 lines
2.3 KiB
Python
import torch
|
|
import numpy as np
|
|
from numbers import Number
|
|
from typing import Union, Optional
|
|
|
|
from tianshou.data.batch import _parse_value, Batch
|
|
|
|
|
|
def to_numpy(x: Union[
|
|
Batch, dict, list, tuple, np.ndarray, torch.Tensor]) -> Union[
|
|
Batch, dict, list, tuple, np.ndarray, torch.Tensor]:
|
|
"""Return an object without torch.Tensor."""
|
|
if isinstance(x, torch.Tensor):
|
|
x = x.detach().cpu().numpy()
|
|
elif isinstance(x, dict):
|
|
for k, v in x.items():
|
|
x[k] = to_numpy(v)
|
|
elif isinstance(x, Batch):
|
|
x.to_numpy()
|
|
elif isinstance(x, (list, tuple)):
|
|
try:
|
|
x = to_numpy(_parse_value(x))
|
|
except TypeError:
|
|
x = [to_numpy(e) for e in x]
|
|
else: # fallback
|
|
x = np.asanyarray(x)
|
|
return x
|
|
|
|
|
|
def to_torch(x: Union[Batch, dict, list, tuple, np.ndarray, torch.Tensor],
|
|
dtype: Optional[torch.dtype] = None,
|
|
device: Union[str, int, torch.device] = 'cpu'
|
|
) -> Union[Batch, dict, list, tuple, np.ndarray, torch.Tensor]:
|
|
"""Return an object without np.ndarray."""
|
|
if isinstance(x, torch.Tensor):
|
|
if dtype is not None:
|
|
x = x.type(dtype)
|
|
x = x.to(device)
|
|
elif isinstance(x, dict):
|
|
for k, v in x.items():
|
|
x[k] = to_torch(v, dtype, device)
|
|
elif isinstance(x, Batch):
|
|
x.to_torch(dtype, device)
|
|
elif isinstance(x, (np.number, np.bool_, Number)):
|
|
x = to_torch(np.asanyarray(x), dtype, device)
|
|
elif isinstance(x, (list, tuple)):
|
|
try:
|
|
x = to_torch(_parse_value(x), dtype, device)
|
|
except TypeError:
|
|
x = [to_torch(e, dtype, device) for e in x]
|
|
else: # fallback
|
|
x = np.asanyarray(x)
|
|
if issubclass(x.dtype.type, (np.bool_, np.number)):
|
|
x = torch.from_numpy(x).to(device)
|
|
if dtype is not None:
|
|
x = x.type(dtype)
|
|
else:
|
|
raise TypeError(f"object {x} cannot be converted to torch.")
|
|
return x
|
|
|
|
|
|
def to_torch_as(x: Union[torch.Tensor, dict, Batch, np.ndarray],
|
|
y: torch.Tensor
|
|
) -> Union[dict, Batch, torch.Tensor]:
|
|
"""Return an object without np.ndarray. Same as
|
|
``to_torch(x, dtype=y.dtype, device=y.device)``.
|
|
"""
|
|
assert isinstance(y, torch.Tensor)
|
|
return to_torch(x, dtype=y.dtype, device=y.device)
|