Change the behavior of to_numpy and to_torch: from now on, dict is automatically converted to Batch and list is automatically converted to np.ndarray (if an error occurs, raise the exception instead of converting each element in the list).
347 lines
14 KiB
Python
347 lines
14 KiB
Python
import h5py
|
|
import numpy as np
|
|
from typing import Any, Dict, List, Tuple, Union, Optional
|
|
|
|
from tianshou.data import Batch
|
|
from tianshou.data.utils.converter import to_hdf5, from_hdf5
|
|
from tianshou.data.batch import _create_value, _alloc_by_keys_diff
|
|
|
|
|
|
class ReplayBuffer:
|
|
""":class:`~tianshou.data.ReplayBuffer` stores data generated from interaction \
|
|
between the policy and environment.
|
|
|
|
ReplayBuffer can be considered as a specialized form (or management) of Batch. It
|
|
stores all the data in a batch with circular-queue style.
|
|
|
|
For the example usage of ReplayBuffer, please check out Section Buffer in
|
|
:doc:`/tutorials/concepts`.
|
|
|
|
:param int size: the maximum size of replay buffer.
|
|
:param int stack_num: the frame-stack sampling argument, should be greater than or
|
|
equal to 1. Default to 1 (no stacking).
|
|
:param bool ignore_obs_next: whether to store obs_next. Default to False.
|
|
:param bool save_only_last_obs: only save the last obs/obs_next when it has a shape
|
|
of (timestep, ...) because of temporal stacking. Default to False.
|
|
:param bool sample_avail: the parameter indicating sampling only available index
|
|
when using frame-stack sampling method. Default to False.
|
|
"""
|
|
|
|
_reserved_keys = ("obs", "act", "rew", "done", "obs_next", "info", "policy")
|
|
|
|
def __init__(
|
|
self,
|
|
size: int,
|
|
stack_num: int = 1,
|
|
ignore_obs_next: bool = False,
|
|
save_only_last_obs: bool = False,
|
|
sample_avail: bool = False,
|
|
**kwargs: Any, # otherwise PrioritizedVectorReplayBuffer will cause TypeError
|
|
) -> None:
|
|
self.options: Dict[str, Any] = {
|
|
"stack_num": stack_num,
|
|
"ignore_obs_next": ignore_obs_next,
|
|
"save_only_last_obs": save_only_last_obs,
|
|
"sample_avail": sample_avail,
|
|
}
|
|
super().__init__()
|
|
self.maxsize = size
|
|
assert stack_num > 0, "stack_num should be greater than 0"
|
|
self.stack_num = stack_num
|
|
self._indices = np.arange(size)
|
|
self._save_obs_next = not ignore_obs_next
|
|
self._save_only_last_obs = save_only_last_obs
|
|
self._sample_avail = sample_avail
|
|
self._meta: Batch = Batch()
|
|
self.reset()
|
|
|
|
def __len__(self) -> int:
|
|
"""Return len(self)."""
|
|
return self._size
|
|
|
|
def __repr__(self) -> str:
|
|
"""Return str(self)."""
|
|
return self.__class__.__name__ + self._meta.__repr__()[5:]
|
|
|
|
def __getattr__(self, key: str) -> Any:
|
|
"""Return self.key."""
|
|
try:
|
|
return self._meta[key]
|
|
except KeyError as e:
|
|
raise AttributeError from e
|
|
|
|
def __setstate__(self, state: Dict[str, Any]) -> None:
|
|
"""Unpickling interface.
|
|
|
|
We need it because pickling buffer does not work out-of-the-box
|
|
("buffer.__getattr__" is customized).
|
|
"""
|
|
self.__dict__.update(state)
|
|
|
|
def __setattr__(self, key: str, value: Any) -> None:
|
|
"""Set self.key = value."""
|
|
assert (
|
|
key not in self._reserved_keys
|
|
), "key '{}' is reserved and cannot be assigned".format(key)
|
|
super().__setattr__(key, value)
|
|
|
|
def save_hdf5(self, path: str) -> None:
|
|
"""Save replay buffer to HDF5 file."""
|
|
with h5py.File(path, "w") as f:
|
|
to_hdf5(self.__dict__, f)
|
|
|
|
@classmethod
|
|
def load_hdf5(cls, path: str, device: Optional[str] = None) -> "ReplayBuffer":
|
|
"""Load replay buffer from HDF5 file."""
|
|
with h5py.File(path, "r") as f:
|
|
buf = cls.__new__(cls)
|
|
buf.__setstate__(from_hdf5(f, device=device))
|
|
return buf
|
|
|
|
def reset(self, keep_statistics: bool = False) -> None:
|
|
"""Clear all the data in replay buffer and episode statistics."""
|
|
self.last_index = np.array([0])
|
|
self._index = self._size = 0
|
|
if not keep_statistics:
|
|
self._ep_rew, self._ep_len, self._ep_idx = 0.0, 0, 0
|
|
|
|
def set_batch(self, batch: Batch) -> None:
|
|
"""Manually choose the batch you want the ReplayBuffer to manage."""
|
|
assert len(batch) == self.maxsize and set(batch.keys()).issubset(
|
|
self._reserved_keys
|
|
), "Input batch doesn't meet ReplayBuffer's data form requirement."
|
|
self._meta = batch
|
|
|
|
def unfinished_index(self) -> np.ndarray:
|
|
"""Return the index of unfinished episode."""
|
|
last = (self._index - 1) % self._size if self._size else 0
|
|
return np.array([last] if not self.done[last] and self._size else [], int)
|
|
|
|
def prev(self, index: Union[int, np.ndarray]) -> np.ndarray:
|
|
"""Return the index of previous transition.
|
|
|
|
The index won't be modified if it is the beginning of an episode.
|
|
"""
|
|
index = (index - 1) % self._size
|
|
end_flag = self.done[index] | (index == self.last_index[0])
|
|
return (index + end_flag) % self._size
|
|
|
|
def next(self, index: Union[int, np.ndarray]) -> np.ndarray:
|
|
"""Return the index of next transition.
|
|
|
|
The index won't be modified if it is the end of an episode.
|
|
"""
|
|
end_flag = self.done[index] | (index == self.last_index[0])
|
|
return (index + (1 - end_flag)) % self._size
|
|
|
|
def update(self, buffer: "ReplayBuffer") -> np.ndarray:
|
|
"""Move the data from the given buffer to current buffer.
|
|
|
|
Return the updated indices. If update fails, return an empty array.
|
|
"""
|
|
if len(buffer) == 0 or self.maxsize == 0:
|
|
return np.array([], int)
|
|
stack_num, buffer.stack_num = buffer.stack_num, 1
|
|
from_indices = buffer.sample_index(0) # get all available indices
|
|
buffer.stack_num = stack_num
|
|
if len(from_indices) == 0:
|
|
return np.array([], int)
|
|
to_indices = []
|
|
for _ in range(len(from_indices)):
|
|
to_indices.append(self._index)
|
|
self.last_index[0] = self._index
|
|
self._index = (self._index + 1) % self.maxsize
|
|
self._size = min(self._size + 1, self.maxsize)
|
|
to_indices = np.array(to_indices)
|
|
if self._meta.is_empty():
|
|
self._meta = _create_value( # type: ignore
|
|
buffer._meta, self.maxsize, stack=False)
|
|
self._meta[to_indices] = buffer._meta[from_indices]
|
|
return to_indices
|
|
|
|
def _add_index(
|
|
self, rew: Union[float, np.ndarray], done: bool
|
|
) -> Tuple[int, Union[float, np.ndarray], int, int]:
|
|
"""Maintain the buffer's state after adding one data batch.
|
|
|
|
Return (index_to_be_modified, episode_reward, episode_length,
|
|
episode_start_index).
|
|
"""
|
|
self.last_index[0] = ptr = self._index
|
|
self._size = min(self._size + 1, self.maxsize)
|
|
self._index = (self._index + 1) % self.maxsize
|
|
|
|
self._ep_rew += rew
|
|
self._ep_len += 1
|
|
|
|
if done:
|
|
result = ptr, self._ep_rew, self._ep_len, self._ep_idx
|
|
self._ep_rew, self._ep_len, self._ep_idx = 0.0, 0, self._index
|
|
return result
|
|
else:
|
|
return ptr, self._ep_rew * 0.0, 0, self._ep_idx
|
|
|
|
def add(
|
|
self, batch: Batch, buffer_ids: Optional[Union[np.ndarray, List[int]]] = None
|
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
|
"""Add a batch of data into replay buffer.
|
|
|
|
:param Batch batch: the input data batch. Its keys must belong to the 7
|
|
reserved keys, and "obs", "act", "rew", "done" is required.
|
|
:param buffer_ids: to make consistent with other buffer's add function; if it
|
|
is not None, we assume the input batch's first dimension is always 1.
|
|
|
|
Return (current_index, episode_reward, episode_length, episode_start_index). If
|
|
the episode is not finished, the return value of episode_length and
|
|
episode_reward is 0.
|
|
"""
|
|
# preprocess batch
|
|
b = Batch()
|
|
for key in set(self._reserved_keys).intersection(batch.keys()):
|
|
b.__dict__[key] = batch[key]
|
|
batch = b
|
|
assert set(["obs", "act", "rew", "done"]).issubset(batch.keys())
|
|
stacked_batch = buffer_ids is not None
|
|
if stacked_batch:
|
|
assert len(batch) == 1
|
|
if self._save_only_last_obs:
|
|
batch.obs = batch.obs[:, -1] if stacked_batch else batch.obs[-1]
|
|
if not self._save_obs_next:
|
|
batch.pop("obs_next", None)
|
|
elif self._save_only_last_obs:
|
|
batch.obs_next = (
|
|
batch.obs_next[:, -1] if stacked_batch else batch.obs_next[-1]
|
|
)
|
|
# get ptr
|
|
if stacked_batch:
|
|
rew, done = batch.rew[0], batch.done[0]
|
|
else:
|
|
rew, done = batch.rew, batch.done
|
|
ptr, ep_rew, ep_len, ep_idx = list(
|
|
map(lambda x: np.array([x]), self._add_index(rew, done))
|
|
)
|
|
try:
|
|
self._meta[ptr] = batch
|
|
except ValueError:
|
|
stack = not stacked_batch
|
|
batch.rew = batch.rew.astype(float)
|
|
batch.done = batch.done.astype(bool)
|
|
if self._meta.is_empty():
|
|
self._meta = _create_value( # type: ignore
|
|
batch, self.maxsize, stack)
|
|
else: # dynamic key pops up in batch
|
|
_alloc_by_keys_diff(self._meta, batch, self.maxsize, stack)
|
|
self._meta[ptr] = batch
|
|
return ptr, ep_rew, ep_len, ep_idx
|
|
|
|
def sample_index(self, batch_size: int) -> np.ndarray:
|
|
"""Get a random sample of index with size = batch_size.
|
|
|
|
Return all available indices in the buffer if batch_size is 0; return an empty
|
|
numpy array if batch_size < 0 or no available index can be sampled.
|
|
"""
|
|
if self.stack_num == 1 or not self._sample_avail: # most often case
|
|
if batch_size > 0:
|
|
return np.random.choice(self._size, batch_size)
|
|
elif batch_size == 0: # construct current available indices
|
|
return np.concatenate(
|
|
[np.arange(self._index, self._size), np.arange(self._index)]
|
|
)
|
|
else:
|
|
return np.array([], int)
|
|
else:
|
|
if batch_size < 0:
|
|
return np.array([], int)
|
|
all_indices = prev_indices = np.concatenate(
|
|
[np.arange(self._index, self._size), np.arange(self._index)]
|
|
)
|
|
for _ in range(self.stack_num - 2):
|
|
prev_indices = self.prev(prev_indices)
|
|
all_indices = all_indices[prev_indices != self.prev(prev_indices)]
|
|
if batch_size > 0:
|
|
return np.random.choice(all_indices, batch_size)
|
|
else:
|
|
return all_indices
|
|
|
|
def sample(self, batch_size: int) -> Tuple[Batch, np.ndarray]:
|
|
"""Get a random sample from buffer with size = batch_size.
|
|
|
|
Return all the data in the buffer if batch_size is 0.
|
|
|
|
:return: Sample data and its corresponding index inside the buffer.
|
|
"""
|
|
indices = self.sample_index(batch_size)
|
|
return self[indices], indices
|
|
|
|
def get(
|
|
self,
|
|
index: Union[int, List[int], np.ndarray],
|
|
key: str,
|
|
default_value: Any = None,
|
|
stack_num: Optional[int] = None,
|
|
) -> Union[Batch, np.ndarray]:
|
|
"""Return the stacked result.
|
|
|
|
E.g., if you set ``key = "obs", stack_num = 4, index = t``, it returns the
|
|
stacked result as ``[obs[t-3], obs[t-2], obs[t-1], obs[t]]``.
|
|
|
|
:param index: the index for getting stacked data.
|
|
:param str key: the key to get, should be one of the reserved_keys.
|
|
:param default_value: if the given key's data is not found and default_value is
|
|
set, return this default_value.
|
|
:param int stack_num: Default to self.stack_num.
|
|
"""
|
|
if key not in self._meta and default_value is not None:
|
|
return default_value
|
|
val = self._meta[key]
|
|
if stack_num is None:
|
|
stack_num = self.stack_num
|
|
try:
|
|
if stack_num == 1: # the most often case
|
|
return val[index]
|
|
stack: List[Any] = []
|
|
if isinstance(index, list):
|
|
indice = np.array(index)
|
|
else:
|
|
indice = index # type: ignore
|
|
for _ in range(stack_num):
|
|
stack = [val[indice]] + stack
|
|
indice = self.prev(indice)
|
|
if isinstance(val, Batch):
|
|
return Batch.stack(stack, axis=indice.ndim)
|
|
else:
|
|
return np.stack(stack, axis=indice.ndim)
|
|
except IndexError as e:
|
|
if not (isinstance(val, Batch) and val.is_empty()):
|
|
raise e # val != Batch()
|
|
return Batch()
|
|
|
|
def __getitem__(self, index: Union[slice, int, List[int], np.ndarray]) -> Batch:
|
|
"""Return a data batch: self[index].
|
|
|
|
If stack_num is larger than 1, return the stacked obs and obs_next with shape
|
|
(batch, len, ...).
|
|
"""
|
|
if isinstance(index, slice): # change slice to np array
|
|
# buffer[:] will get all available data
|
|
indice = self.sample_index(0) if index == slice(None) \
|
|
else self._indices[:len(self)][index]
|
|
else:
|
|
indice = index
|
|
# raise KeyError first instead of AttributeError,
|
|
# to support np.array([ReplayBuffer()])
|
|
obs = self.get(indice, "obs")
|
|
if self._save_obs_next:
|
|
obs_next = self.get(indice, "obs_next", Batch())
|
|
else:
|
|
obs_next = self.get(self.next(indice), "obs", Batch())
|
|
return Batch(
|
|
obs=obs,
|
|
act=self.act[indice],
|
|
rew=self.rew[indice],
|
|
done=self.done[indice],
|
|
obs_next=obs_next,
|
|
info=self.get(indice, "info", Batch()),
|
|
policy=self.get(indice, "policy", Batch()),
|
|
)
|