Tianshou/test/modelbased/test_ppo_icm.py
Jiayi Weng 3d697aa4c6
make unit test faster (#522)
* test cache expert data in offline training

* faster cql test

* faster tests

* use dummy

* test ray dependency
2022-02-09 00:24:52 +08:00

187 lines
6.6 KiB
Python

import argparse
import os
import pprint
import gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import ICMPolicy, PPOPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import MLP, ActorCritic, Net
from tianshou.utils.net.discrete import Actor, Critic, IntrinsicCuriosityModule
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=3e-4)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--step-per-epoch', type=int, default=50000)
parser.add_argument('--step-per-collect', type=int, default=2000)
parser.add_argument('--repeat-per-collect', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
parser.add_argument('--training-num', type=int, default=20)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
# ppo special
parser.add_argument('--vf-coef', type=float, default=0.5)
parser.add_argument('--ent-coef', type=float, default=0.0)
parser.add_argument('--eps-clip', type=float, default=0.2)
parser.add_argument('--max-grad-norm', type=float, default=0.5)
parser.add_argument('--gae-lambda', type=float, default=0.95)
parser.add_argument('--rew-norm', type=int, default=0)
parser.add_argument('--norm-adv', type=int, default=0)
parser.add_argument('--recompute-adv', type=int, default=0)
parser.add_argument('--dual-clip', type=float, default=None)
parser.add_argument('--value-clip', type=int, default=0)
parser.add_argument(
'--lr-scale',
type=float,
default=1.,
help='use intrinsic curiosity module with this lr scale'
)
parser.add_argument(
'--reward-scale',
type=float,
default=0.01,
help='scaling factor for intrinsic curiosity reward'
)
parser.add_argument(
'--forward-loss-weight',
type=float,
default=0.2,
help='weight for the forward model loss in ICM'
)
args = parser.parse_known_args()[0]
return args
def test_ppo(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)]
)
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
actor_critic = ActorCritic(actor, critic)
# orthogonal initialization
for m in actor_critic.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
dist = torch.distributions.Categorical
policy = PPOPolicy(
actor,
critic,
optim,
dist,
discount_factor=args.gamma,
max_grad_norm=args.max_grad_norm,
eps_clip=args.eps_clip,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
gae_lambda=args.gae_lambda,
reward_normalization=args.rew_norm,
dual_clip=args.dual_clip,
value_clip=args.value_clip,
action_space=env.action_space,
deterministic_eval=True,
advantage_normalization=args.norm_adv,
recompute_advantage=args.recompute_adv
)
feature_dim = args.hidden_sizes[-1]
feature_net = MLP(
np.prod(args.state_shape),
output_dim=feature_dim,
hidden_sizes=args.hidden_sizes[:-1],
device=args.device
)
action_dim = np.prod(args.action_shape)
icm_net = IntrinsicCuriosityModule(
feature_net,
feature_dim,
action_dim,
hidden_sizes=args.hidden_sizes[-1:],
device=args.device
).to(args.device)
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr)
policy = ICMPolicy(
policy, icm_net, icm_optim, args.lr_scale, args.reward_scale,
args.forward_loss_weight
)
# collector
train_collector = Collector(
policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs))
)
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, 'ppo_icm')
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
# trainer
result = onpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.repeat_per_collect,
args.test_num,
args.batch_size,
step_per_collect=args.step_per_collect,
stop_fn=stop_fn,
save_fn=save_fn,
logger=logger
)
assert stop_fn(result['best_reward'])
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == '__main__':
test_ppo()