* test cache expert data in offline training * faster cql test * faster tests * use dummy * test ray dependency
187 lines
6.6 KiB
Python
187 lines
6.6 KiB
Python
import argparse
|
|
import os
|
|
import pprint
|
|
|
|
import gym
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import ICMPolicy, PPOPolicy
|
|
from tianshou.trainer import onpolicy_trainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import MLP, ActorCritic, Net
|
|
from tianshou.utils.net.discrete import Actor, Critic, IntrinsicCuriosityModule
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--task', type=str, default='CartPole-v0')
|
|
parser.add_argument('--seed', type=int, default=1626)
|
|
parser.add_argument('--buffer-size', type=int, default=20000)
|
|
parser.add_argument('--lr', type=float, default=3e-4)
|
|
parser.add_argument('--gamma', type=float, default=0.99)
|
|
parser.add_argument('--epoch', type=int, default=10)
|
|
parser.add_argument('--step-per-epoch', type=int, default=50000)
|
|
parser.add_argument('--step-per-collect', type=int, default=2000)
|
|
parser.add_argument('--repeat-per-collect', type=int, default=10)
|
|
parser.add_argument('--batch-size', type=int, default=64)
|
|
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
|
|
parser.add_argument('--training-num', type=int, default=20)
|
|
parser.add_argument('--test-num', type=int, default=100)
|
|
parser.add_argument('--logdir', type=str, default='log')
|
|
parser.add_argument('--render', type=float, default=0.)
|
|
parser.add_argument(
|
|
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
|
|
)
|
|
# ppo special
|
|
parser.add_argument('--vf-coef', type=float, default=0.5)
|
|
parser.add_argument('--ent-coef', type=float, default=0.0)
|
|
parser.add_argument('--eps-clip', type=float, default=0.2)
|
|
parser.add_argument('--max-grad-norm', type=float, default=0.5)
|
|
parser.add_argument('--gae-lambda', type=float, default=0.95)
|
|
parser.add_argument('--rew-norm', type=int, default=0)
|
|
parser.add_argument('--norm-adv', type=int, default=0)
|
|
parser.add_argument('--recompute-adv', type=int, default=0)
|
|
parser.add_argument('--dual-clip', type=float, default=None)
|
|
parser.add_argument('--value-clip', type=int, default=0)
|
|
parser.add_argument(
|
|
'--lr-scale',
|
|
type=float,
|
|
default=1.,
|
|
help='use intrinsic curiosity module with this lr scale'
|
|
)
|
|
parser.add_argument(
|
|
'--reward-scale',
|
|
type=float,
|
|
default=0.01,
|
|
help='scaling factor for intrinsic curiosity reward'
|
|
)
|
|
parser.add_argument(
|
|
'--forward-loss-weight',
|
|
type=float,
|
|
default=0.2,
|
|
help='weight for the forward model loss in ICM'
|
|
)
|
|
args = parser.parse_known_args()[0]
|
|
return args
|
|
|
|
|
|
def test_ppo(args=get_args()):
|
|
env = gym.make(args.task)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
# train_envs = gym.make(args.task)
|
|
# you can also use tianshou.env.SubprocVectorEnv
|
|
train_envs = DummyVectorEnv(
|
|
[lambda: gym.make(args.task) for _ in range(args.training_num)]
|
|
)
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = DummyVectorEnv(
|
|
[lambda: gym.make(args.task) for _ in range(args.test_num)]
|
|
)
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# model
|
|
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
|
|
critic = Critic(net, device=args.device).to(args.device)
|
|
actor_critic = ActorCritic(actor, critic)
|
|
# orthogonal initialization
|
|
for m in actor_critic.modules():
|
|
if isinstance(m, torch.nn.Linear):
|
|
torch.nn.init.orthogonal_(m.weight)
|
|
torch.nn.init.zeros_(m.bias)
|
|
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
|
|
dist = torch.distributions.Categorical
|
|
policy = PPOPolicy(
|
|
actor,
|
|
critic,
|
|
optim,
|
|
dist,
|
|
discount_factor=args.gamma,
|
|
max_grad_norm=args.max_grad_norm,
|
|
eps_clip=args.eps_clip,
|
|
vf_coef=args.vf_coef,
|
|
ent_coef=args.ent_coef,
|
|
gae_lambda=args.gae_lambda,
|
|
reward_normalization=args.rew_norm,
|
|
dual_clip=args.dual_clip,
|
|
value_clip=args.value_clip,
|
|
action_space=env.action_space,
|
|
deterministic_eval=True,
|
|
advantage_normalization=args.norm_adv,
|
|
recompute_advantage=args.recompute_adv
|
|
)
|
|
feature_dim = args.hidden_sizes[-1]
|
|
feature_net = MLP(
|
|
np.prod(args.state_shape),
|
|
output_dim=feature_dim,
|
|
hidden_sizes=args.hidden_sizes[:-1],
|
|
device=args.device
|
|
)
|
|
action_dim = np.prod(args.action_shape)
|
|
icm_net = IntrinsicCuriosityModule(
|
|
feature_net,
|
|
feature_dim,
|
|
action_dim,
|
|
hidden_sizes=args.hidden_sizes[-1:],
|
|
device=args.device
|
|
).to(args.device)
|
|
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr)
|
|
policy = ICMPolicy(
|
|
policy, icm_net, icm_optim, args.lr_scale, args.reward_scale,
|
|
args.forward_loss_weight
|
|
)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs))
|
|
)
|
|
test_collector = Collector(policy, test_envs)
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, 'ppo_icm')
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
|
|
|
|
def stop_fn(mean_rewards):
|
|
return mean_rewards >= env.spec.reward_threshold
|
|
|
|
# trainer
|
|
result = onpolicy_trainer(
|
|
policy,
|
|
train_collector,
|
|
test_collector,
|
|
args.epoch,
|
|
args.step_per_epoch,
|
|
args.repeat_per_collect,
|
|
args.test_num,
|
|
args.batch_size,
|
|
step_per_collect=args.step_per_collect,
|
|
stop_fn=stop_fn,
|
|
save_fn=save_fn,
|
|
logger=logger
|
|
)
|
|
assert stop_fn(result['best_reward'])
|
|
|
|
if __name__ == '__main__':
|
|
pprint.pprint(result)
|
|
# Let's watch its performance!
|
|
env = gym.make(args.task)
|
|
policy.eval()
|
|
collector = Collector(policy, env)
|
|
result = collector.collect(n_episode=1, render=args.render)
|
|
rews, lens = result["rews"], result["lens"]
|
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_ppo()
|