Michael Panchenko 2cc34fb72b
Poetry install, remove gym, bump python (#925)
Closes #914 

Additional changes:

- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible

Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
2023-09-05 14:34:23 -07:00

209 lines
7.8 KiB
Python

import copy
from typing import Any
import numpy as np
import torch
import torch.nn.functional as F
from tianshou.data import Batch, to_torch
from tianshou.data.batch import BatchProtocol
from tianshou.data.types import RolloutBatchProtocol
from tianshou.policy import BasePolicy
from tianshou.utils.net.continuous import VAE
class BCQPolicy(BasePolicy):
"""Implementation of BCQ algorithm. arXiv:1812.02900.
:param Perturbation actor: the actor perturbation. (s, a -> perturbed a)
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
:param torch.nn.Module critic1: the first critic network. (s, a -> Q(s, a))
:param torch.optim.Optimizer critic1_optim: the optimizer for the first
critic network.
:param torch.nn.Module critic2: the second critic network. (s, a -> Q(s, a))
:param torch.optim.Optimizer critic2_optim: the optimizer for the second
critic network.
:param VAE vae: the VAE network, generating actions similar
to those in batch. (s, a -> generated a)
:param torch.optim.Optimizer vae_optim: the optimizer for the VAE network.
:param Union[str, torch.device] device: which device to create this model on.
Default to "cpu".
:param float gamma: discount factor, in [0, 1]. Default to 0.99.
:param float tau: param for soft update of the target network.
Default to 0.005.
:param float lmbda: param for Clipped Double Q-learning. Default to 0.75.
:param int forward_sampled_times: the number of sampled actions in forward
function. The policy samples many actions and takes the action with the
max value. Default to 100.
:param int num_sampled_action: the number of sampled actions in calculating
target Q. The algorithm samples several actions using VAE, and perturbs
each action to get the target Q. Default to 10.
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
optimizer in each policy.update(). Default to None (no lr_scheduler).
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
actor: torch.nn.Module,
actor_optim: torch.optim.Optimizer,
critic1: torch.nn.Module,
critic1_optim: torch.optim.Optimizer,
critic2: torch.nn.Module,
critic2_optim: torch.optim.Optimizer,
vae: VAE,
vae_optim: torch.optim.Optimizer,
device: str | torch.device = "cpu",
gamma: float = 0.99,
tau: float = 0.005,
lmbda: float = 0.75,
forward_sampled_times: int = 100,
num_sampled_action: int = 10,
**kwargs: Any,
) -> None:
# actor is Perturbation!
super().__init__(**kwargs)
self.actor = actor
self.actor_target = copy.deepcopy(self.actor)
self.actor_optim = actor_optim
self.critic1 = critic1
self.critic1_target = copy.deepcopy(self.critic1)
self.critic1_optim = critic1_optim
self.critic2 = critic2
self.critic2_target = copy.deepcopy(self.critic2)
self.critic2_optim = critic2_optim
self.vae = vae
self.vae_optim = vae_optim
self.gamma = gamma
self.tau = tau
self.lmbda = lmbda
self.device = device
self.forward_sampled_times = forward_sampled_times
self.num_sampled_action = num_sampled_action
def train(self, mode: bool = True) -> "BCQPolicy":
"""Set the module in training mode, except for the target network."""
self.training = mode
self.actor.train(mode)
self.critic1.train(mode)
self.critic2.train(mode)
return self
def forward(
self,
batch: RolloutBatchProtocol,
state: dict | BatchProtocol | np.ndarray | None = None,
**kwargs: Any,
) -> Batch:
"""Compute action over the given batch data."""
# There is "obs" in the Batch
# obs_group: several groups. Each group has a state.
obs_group: torch.Tensor = to_torch(batch.obs, device=self.device)
act_group = []
for obs_orig in obs_group:
# now obs is (state_dim)
obs = (obs_orig.reshape(1, -1)).repeat(self.forward_sampled_times, 1)
# now obs is (forward_sampled_times, state_dim)
# decode(obs) generates action and actor perturbs it
act = self.actor(obs, self.vae.decode(obs))
# now action is (forward_sampled_times, action_dim)
q1 = self.critic1(obs, act)
# q1 is (forward_sampled_times, 1)
max_indice = q1.argmax(0)
act_group.append(act[max_indice].cpu().data.numpy().flatten())
act_group = np.array(act_group)
return Batch(act=act_group)
def sync_weight(self) -> None:
"""Soft-update the weight for the target network."""
self.soft_update(self.critic1_target, self.critic1, self.tau)
self.soft_update(self.critic2_target, self.critic2, self.tau)
self.soft_update(self.actor_target, self.actor, self.tau)
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> dict[str, float]:
# batch: obs, act, rew, done, obs_next. (numpy array)
# (batch_size, state_dim)
batch: Batch = to_torch(batch, dtype=torch.float, device=self.device)
obs, act = batch.obs, batch.act
batch_size = obs.shape[0]
# mean, std: (state.shape[0], latent_dim)
recon, mean, std = self.vae(obs, act)
recon_loss = F.mse_loss(act, recon)
# (....) is D_KL( N(mu, sigma) || N(0,1) )
KL_loss = (-torch.log(std) + (std.pow(2) + mean.pow(2) - 1) / 2).mean()
vae_loss = recon_loss + KL_loss / 2
self.vae_optim.zero_grad()
vae_loss.backward()
self.vae_optim.step()
# critic training:
with torch.no_grad():
# repeat num_sampled_action times
obs_next = batch.obs_next.repeat_interleave(self.num_sampled_action, dim=0)
# now obs_next: (num_sampled_action * batch_size, state_dim)
# perturbed action generated by VAE
act_next = self.vae.decode(obs_next)
# now obs_next: (num_sampled_action * batch_size, action_dim)
target_Q1 = self.critic1_target(obs_next, act_next)
target_Q2 = self.critic2_target(obs_next, act_next)
# Clipped Double Q-learning
target_Q = self.lmbda * torch.min(target_Q1, target_Q2) + (1 - self.lmbda) * torch.max(
target_Q1,
target_Q2,
)
# now target_Q: (num_sampled_action * batch_size, 1)
# the max value of Q
target_Q = target_Q.reshape(batch_size, -1).max(dim=1)[0].reshape(-1, 1)
# now target_Q: (batch_size, 1)
target_Q = (
batch.rew.reshape(-1, 1) + (1 - batch.done).reshape(-1, 1) * self.gamma * target_Q
)
current_Q1 = self.critic1(obs, act)
current_Q2 = self.critic2(obs, act)
critic1_loss = F.mse_loss(current_Q1, target_Q)
critic2_loss = F.mse_loss(current_Q2, target_Q)
self.critic1_optim.zero_grad()
self.critic2_optim.zero_grad()
critic1_loss.backward()
critic2_loss.backward()
self.critic1_optim.step()
self.critic2_optim.step()
sampled_act = self.vae.decode(obs)
perturbed_act = self.actor(obs, sampled_act)
# max
actor_loss = -self.critic1(obs, perturbed_act).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
# update target network
self.sync_weight()
return {
"loss/actor": actor_loss.item(),
"loss/critic1": critic1_loss.item(),
"loss/critic2": critic2_loss.item(),
"loss/vae": vae_loss.item(),
}