Tianshou/tianshou/policy/imitation/discrete_cql.py
Michael Panchenko 600f4bbd55
Python 3.9, black + ruff formatting (#921)
Preparation for #914 and #920

Changes formatting to ruff and black. Remove python 3.8

## Additional Changes

- Removed flake8 dependencies
- Adjusted pre-commit. Now CI and Make use pre-commit, reducing the
duplication of linting calls
- Removed check-docstyle option (ruff is doing that)
- Merged format and lint. In CI the format-lint step fails if any
changes are done, so it fulfills the lint functionality.

---------

Co-authored-by: Jiayi Weng <jiayi@openai.com>
2023-08-25 14:40:56 -07:00

93 lines
3.6 KiB
Python

from typing import Any
import numpy as np
import torch
import torch.nn.functional as F
from tianshou.data import to_torch
from tianshou.data.types import RolloutBatchProtocol
from tianshou.policy import QRDQNPolicy
class DiscreteCQLPolicy(QRDQNPolicy):
"""Implementation of discrete Conservative Q-Learning algorithm. arXiv:2006.04779.
:param torch.nn.Module model: a model following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.optim.Optimizer optim: a torch.optim for optimizing the model.
:param float discount_factor: in [0, 1].
:param int num_quantiles: the number of quantile midpoints in the inverse
cumulative distribution function of the value. Default to 200.
:param int estimation_step: the number of steps to look ahead. Default to 1.
:param int target_update_freq: the target network update frequency (0 if
you do not use the target network).
:param bool reward_normalization: normalize the reward to Normal(0, 1).
Default to False.
:param float min_q_weight: the weight for the cql loss.
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
optimizer in each policy.update(). Default to None (no lr_scheduler).
.. seealso::
Please refer to :class:`~tianshou.policy.QRDQNPolicy` for more detailed
explanation.
"""
def __init__(
self,
model: torch.nn.Module,
optim: torch.optim.Optimizer,
discount_factor: float = 0.99,
num_quantiles: int = 200,
estimation_step: int = 1,
target_update_freq: int = 0,
reward_normalization: bool = False,
min_q_weight: float = 10.0,
**kwargs: Any,
) -> None:
super().__init__(
model,
optim,
discount_factor,
num_quantiles,
estimation_step,
target_update_freq,
reward_normalization,
**kwargs,
)
self._min_q_weight = min_q_weight
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> dict[str, float]:
if self._target and self._iter % self._freq == 0:
self.sync_weight()
self.optim.zero_grad()
weight = batch.pop("weight", 1.0)
all_dist = self(batch).logits
act = to_torch(batch.act, dtype=torch.long, device=all_dist.device)
curr_dist = all_dist[np.arange(len(act)), act, :].unsqueeze(2)
target_dist = batch.returns.unsqueeze(1)
# calculate each element's difference between curr_dist and target_dist
dist_diff = F.smooth_l1_loss(target_dist, curr_dist, reduction="none")
huber_loss = (
(dist_diff * (self.tau_hat - (target_dist - curr_dist).detach().le(0.0).float()).abs())
.sum(-1)
.mean(1)
)
qr_loss = (huber_loss * weight).mean()
# ref: https://github.com/ku2482/fqf-iqn-qrdqn.pytorch/
# blob/master/fqf_iqn_qrdqn/agent/qrdqn_agent.py L130
batch.weight = dist_diff.detach().abs().sum(-1).mean(1) # prio-buffer
# add CQL loss
q = self.compute_q_value(all_dist, None)
dataset_expec = q.gather(1, act.unsqueeze(1)).mean()
negative_sampling = q.logsumexp(1).mean()
min_q_loss = negative_sampling - dataset_expec
loss = qr_loss + min_q_loss * self._min_q_weight
loss.backward()
self.optim.step()
self._iter += 1
return {
"loss": loss.item(),
"loss/qr": qr_loss.item(),
"loss/cql": min_q_loss.item(),
}