Michael Panchenko 2cc34fb72b
Poetry install, remove gym, bump python (#925)
Closes #914 

Additional changes:

- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible

Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
2023-09-05 14:34:23 -07:00

157 lines
6.6 KiB
Python

from collections.abc import Callable
from typing import Any
import numpy as np
import torch
import torch.nn.functional as F
from tianshou.data import ReplayBuffer, to_numpy, to_torch
from tianshou.data.types import LogpOldProtocol, RolloutBatchProtocol
from tianshou.policy import PPOPolicy
from tianshou.policy.modelfree.pg import TDistParams
class GAILPolicy(PPOPolicy):
r"""Implementation of Generative Adversarial Imitation Learning. arXiv:1606.03476.
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.nn.Module critic: the critic network. (s -> V(s))
:param torch.optim.Optimizer optim: the optimizer for actor and critic network.
:param dist_fn: distribution class for computing the action.
:param ReplayBuffer expert_buffer: the replay buffer contains expert experience.
:param torch.nn.Module disc_net: the discriminator network with input dim equals
state dim plus action dim and output dim equals 1.
:param torch.optim.Optimizer disc_optim: the optimizer for the discriminator
network.
:param int disc_update_num: the number of discriminator grad steps per model grad
step. Default to 4.
:param float discount_factor: in [0, 1]. Default to 0.99.
:param float eps_clip: :math:`\epsilon` in :math:`L_{CLIP}` in the original
paper. Default to 0.2.
:param float dual_clip: a parameter c mentioned in arXiv:1912.09729 Equ. 5,
where c > 1 is a constant indicating the lower bound.
Default to 5.0 (set None if you do not want to use it).
:param bool value_clip: a parameter mentioned in arXiv:1811.02553 Sec. 4.1.
Default to True.
:param bool advantage_normalization: whether to do per mini-batch advantage
normalization. Default to True.
:param bool recompute_advantage: whether to recompute advantage every update
repeat according to https://arxiv.org/pdf/2006.05990.pdf Sec. 3.5.
Default to False.
:param float vf_coef: weight for value loss. Default to 0.5.
:param float ent_coef: weight for entropy loss. Default to 0.01.
:param float max_grad_norm: clipping gradients in back propagation. Default to
None.
:param float gae_lambda: in [0, 1], param for Generalized Advantage Estimation.
Default to 0.95.
:param bool reward_normalization: normalize estimated values to have std close
to 1, also normalize the advantage to Normal(0, 1). Default to False.
:param int max_batchsize: the maximum size of the batch when computing GAE,
depends on the size of available memory and the memory cost of the model;
should be as large as possible within the memory constraint. Default to 256.
:param bool action_scaling: whether to map actions from range [-1, 1] to range
[action_spaces.low, action_spaces.high]. Default to True.
:param str action_bound_method: method to bound action to range [-1, 1], can be
either "clip" (for simply clipping the action), "tanh" (for applying tanh
squashing) for now, or empty string for no bounding. Default to "clip".
:param Optional[gym.Space] action_space: env's action space, mandatory if you want
to use option "action_scaling" or "action_bound_method". Default to None.
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
optimizer in each policy.update(). Default to None (no lr_scheduler).
:param bool deterministic_eval: whether to use deterministic action instead of
stochastic action sampled by the policy. Default to False.
.. seealso::
Please refer to :class:`~tianshou.policy.PPOPolicy` for more detailed
explanation.
"""
def __init__(
self,
actor: torch.nn.Module,
critic: torch.nn.Module,
optim: torch.optim.Optimizer,
dist_fn: Callable[[TDistParams], torch.distributions.Distribution],
expert_buffer: ReplayBuffer,
disc_net: torch.nn.Module,
disc_optim: torch.optim.Optimizer,
disc_update_num: int = 4,
eps_clip: float = 0.2,
dual_clip: float | None = None,
value_clip: bool = False,
advantage_normalization: bool = True,
recompute_advantage: bool = False,
**kwargs: Any,
) -> None:
super().__init__(
actor,
critic,
optim,
dist_fn,
eps_clip,
dual_clip,
value_clip,
advantage_normalization,
recompute_advantage,
**kwargs,
)
self.disc_net = disc_net
self.disc_optim = disc_optim
self.disc_update_num = disc_update_num
self.expert_buffer = expert_buffer
self.action_dim = actor.output_dim
def process_fn(
self,
batch: RolloutBatchProtocol,
buffer: ReplayBuffer,
indices: np.ndarray,
) -> LogpOldProtocol:
"""Pre-process the data from the provided replay buffer.
Used in :meth:`update`. Check out :ref:`process_fn` for more information.
"""
# update reward
with torch.no_grad():
batch.rew = to_numpy(-F.logsigmoid(-self.disc(batch)).flatten())
return super().process_fn(batch, buffer, indices)
def disc(self, batch: RolloutBatchProtocol) -> torch.Tensor:
obs = to_torch(batch.obs, device=self.disc_net.device)
act = to_torch(batch.act, device=self.disc_net.device)
return self.disc_net(torch.cat([obs, act], dim=1))
def learn( # type: ignore
self,
batch: RolloutBatchProtocol,
batch_size: int,
repeat: int,
**kwargs: Any,
) -> dict[str, list[float]]:
# update discriminator
losses = []
acc_pis = []
acc_exps = []
bsz = len(batch) // self.disc_update_num
for b in batch.split(bsz, merge_last=True):
logits_pi = self.disc(b)
exp_b = self.expert_buffer.sample(bsz)[0]
logits_exp = self.disc(exp_b)
loss_pi = -F.logsigmoid(-logits_pi).mean()
loss_exp = -F.logsigmoid(logits_exp).mean()
loss_disc = loss_pi + loss_exp
self.disc_optim.zero_grad()
loss_disc.backward()
self.disc_optim.step()
losses.append(loss_disc.item())
acc_pis.append((logits_pi < 0).float().mean().item())
acc_exps.append((logits_exp > 0).float().mean().item())
# update policy
res = super().learn(batch, batch_size, repeat, **kwargs)
res["loss/disc"] = losses
res["stats/acc_pi"] = acc_pis
res["stats/acc_exp"] = acc_exps
return res