A test is not a script and should not be used as such Also marked pistonball test as skipped since it doesn't actually test anything
193 lines
7.1 KiB
Python
193 lines
7.1 KiB
Python
import argparse
|
|
import os
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from gymnasium.spaces import Box
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv, SubprocVectorEnv
|
|
from tianshou.policy import A2CPolicy, ImitationPolicy
|
|
from tianshou.policy.base import BasePolicy
|
|
from tianshou.trainer import OffpolicyTrainer, OnpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import ActorCritic, Net
|
|
from tianshou.utils.net.discrete import Actor, Critic
|
|
|
|
try:
|
|
import envpool
|
|
except ImportError:
|
|
envpool = None
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="CartPole-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=1)
|
|
parser.add_argument("--buffer-size", type=int, default=20000)
|
|
parser.add_argument("--lr", type=float, default=1e-3)
|
|
parser.add_argument("--il-lr", type=float, default=1e-3)
|
|
parser.add_argument("--gamma", type=float, default=0.9)
|
|
parser.add_argument("--epoch", type=int, default=10)
|
|
parser.add_argument("--step-per-epoch", type=int, default=50000)
|
|
parser.add_argument("--il-step-per-epoch", type=int, default=1000)
|
|
parser.add_argument("--episode-per-collect", type=int, default=16)
|
|
parser.add_argument("--step-per-collect", type=int, default=16)
|
|
parser.add_argument("--update-per-step", type=float, default=1 / 16)
|
|
parser.add_argument("--repeat-per-collect", type=int, default=1)
|
|
parser.add_argument("--batch-size", type=int, default=64)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
|
|
parser.add_argument("--imitation-hidden-sizes", type=int, nargs="*", default=[128])
|
|
parser.add_argument("--training-num", type=int, default=16)
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
# a2c special
|
|
parser.add_argument("--vf-coef", type=float, default=0.5)
|
|
parser.add_argument("--ent-coef", type=float, default=0.0)
|
|
parser.add_argument("--max-grad-norm", type=float, default=None)
|
|
parser.add_argument("--gae-lambda", type=float, default=1.0)
|
|
parser.add_argument("--rew-norm", action="store_true", default=False)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_a2c_with_il(args: argparse.Namespace = get_args()) -> None:
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
|
|
if envpool is not None:
|
|
train_envs = env = envpool.make(
|
|
args.task,
|
|
env_type="gymnasium",
|
|
num_envs=args.training_num,
|
|
seed=args.seed,
|
|
)
|
|
test_envs = envpool.make(
|
|
args.task,
|
|
env_type="gymnasium",
|
|
num_envs=args.test_num,
|
|
seed=args.seed,
|
|
)
|
|
else:
|
|
env = gym.make(args.task)
|
|
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"CartPole-v1": 195}
|
|
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
|
|
# model
|
|
net = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
|
|
critic = Critic(net, device=args.device).to(args.device)
|
|
optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(), lr=args.lr)
|
|
dist = torch.distributions.Categorical
|
|
policy: BasePolicy
|
|
policy = A2CPolicy(
|
|
actor=actor,
|
|
critic=critic,
|
|
optim=optim,
|
|
dist_fn=dist,
|
|
action_scaling=isinstance(env.action_space, Box),
|
|
discount_factor=args.gamma,
|
|
gae_lambda=args.gae_lambda,
|
|
vf_coef=args.vf_coef,
|
|
ent_coef=args.ent_coef,
|
|
max_grad_norm=args.max_grad_norm,
|
|
reward_normalization=args.rew_norm,
|
|
action_space=env.action_space,
|
|
)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
)
|
|
train_collector.reset()
|
|
test_collector = Collector(policy, test_envs)
|
|
test_collector.reset()
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, "a2c")
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy: BasePolicy) -> None:
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
# trainer
|
|
result = OnpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
repeat_per_collect=args.repeat_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
episode_per_collect=args.episode_per_collect,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
assert stop_fn(result.best_reward)
|
|
|
|
# here we define an imitation collector with a trivial policy
|
|
# if args.task == 'CartPole-v1':
|
|
# env.spec.reward_threshold = 190 # lower the goal
|
|
net = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
|
|
optim = torch.optim.Adam(actor.parameters(), lr=args.il_lr)
|
|
il_policy: ImitationPolicy = ImitationPolicy(
|
|
actor=actor,
|
|
optim=optim,
|
|
action_space=env.action_space,
|
|
)
|
|
if envpool is not None:
|
|
il_env = envpool.make(
|
|
args.task,
|
|
env_type="gymnasium",
|
|
num_envs=args.test_num,
|
|
seed=args.seed,
|
|
)
|
|
else:
|
|
il_env = SubprocVectorEnv(
|
|
[lambda: gym.make(args.task) for _ in range(args.test_num)],
|
|
context="fork",
|
|
)
|
|
il_env.seed(args.seed)
|
|
|
|
il_test_collector = Collector(
|
|
il_policy,
|
|
il_env,
|
|
)
|
|
train_collector.reset()
|
|
result = OffpolicyTrainer(
|
|
policy=il_policy,
|
|
train_collector=train_collector,
|
|
test_collector=il_test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.il_step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
assert stop_fn(result.best_reward)
|