Tianshou/test/discrete/test_ppo.py
Michael Panchenko 12d4262f80 Tests: removed all instances of if __name__ == ... in tests
A test is not a script and should not be used as such

Also marked pistonball test as skipped since it doesn't actually test anything
2024-04-26 17:39:30 +02:00

153 lines
6.1 KiB
Python

import argparse
import os
import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
from gymnasium.spaces import Box
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import PPOPolicy
from tianshou.policy.base import BasePolicy
from tianshou.policy.modelfree.ppo import PPOTrainingStats
from tianshou.trainer import OnpolicyTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import ActorCritic, DataParallelNet, Net
from tianshou.utils.net.discrete import Actor, Critic
from tianshou.utils.space_info import SpaceInfo
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="CartPole-v1")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=1626)
parser.add_argument("--buffer-size", type=int, default=20000)
parser.add_argument("--lr", type=float, default=3e-4)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=50000)
parser.add_argument("--step-per-collect", type=int, default=2000)
parser.add_argument("--repeat-per-collect", type=int, default=10)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--training-num", type=int, default=20)
parser.add_argument("--test-num", type=int, default=100)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
# ppo special
parser.add_argument("--vf-coef", type=float, default=0.5)
parser.add_argument("--ent-coef", type=float, default=0.0)
parser.add_argument("--eps-clip", type=float, default=0.2)
parser.add_argument("--max-grad-norm", type=float, default=0.5)
parser.add_argument("--gae-lambda", type=float, default=0.95)
parser.add_argument("--rew-norm", type=int, default=0)
parser.add_argument("--norm-adv", type=int, default=0)
parser.add_argument("--recompute-adv", type=int, default=0)
parser.add_argument("--dual-clip", type=float, default=None)
parser.add_argument("--value-clip", type=int, default=0)
return parser.parse_known_args()[0]
def test_ppo(args: argparse.Namespace = get_args()) -> None:
env = gym.make(args.task)
space_info = SpaceInfo.from_env(env)
args.state_shape = space_info.observation_info.obs_shape
args.action_shape = space_info.action_info.action_shape
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v1": 195}
args.reward_threshold = default_reward_threshold.get(
args.task,
env.spec.reward_threshold if env.spec else None,
)
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor: nn.Module
critic: nn.Module
if torch.cuda.is_available():
actor = DataParallelNet(Actor(net, args.action_shape, device=args.device).to(args.device))
critic = DataParallelNet(Critic(net, device=args.device).to(args.device))
else:
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
actor_critic = ActorCritic(actor, critic)
# orthogonal initialization
for m in actor_critic.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
dist = torch.distributions.Categorical
policy: PPOPolicy[PPOTrainingStats] = PPOPolicy(
actor=actor,
critic=critic,
optim=optim,
dist_fn=dist,
action_scaling=isinstance(env.action_space, Box),
discount_factor=args.gamma,
max_grad_norm=args.max_grad_norm,
eps_clip=args.eps_clip,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
gae_lambda=args.gae_lambda,
reward_normalization=args.rew_norm,
dual_clip=args.dual_clip,
value_clip=args.value_clip,
action_space=env.action_space,
deterministic_eval=True,
advantage_normalization=args.norm_adv,
recompute_advantage=args.recompute_adv,
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
)
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, "ppo")
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy: BasePolicy) -> None:
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards: float) -> bool:
return mean_rewards >= args.reward_threshold
# trainer
result = OnpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
repeat_per_collect=args.repeat_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
step_per_collect=args.step_per_collect,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
).run()
assert stop_fn(result.best_reward)