A test is not a script and should not be used as such Also marked pistonball test as skipped since it doesn't actually test anything
144 lines
5.9 KiB
Python
144 lines
5.9 KiB
Python
import argparse
|
|
import os
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import DiscreteSACPolicy
|
|
from tianshou.policy.base import BasePolicy
|
|
from tianshou.policy.modelfree.discrete_sac import DiscreteSACTrainingStats
|
|
from tianshou.trainer import OffpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import Net
|
|
from tianshou.utils.net.discrete import Actor, Critic
|
|
from tianshou.utils.space_info import SpaceInfo
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="CartPole-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=1)
|
|
parser.add_argument("--buffer-size", type=int, default=20000)
|
|
parser.add_argument("--actor-lr", type=float, default=1e-4)
|
|
parser.add_argument("--critic-lr", type=float, default=1e-3)
|
|
parser.add_argument("--alpha-lr", type=float, default=3e-4)
|
|
parser.add_argument("--gamma", type=float, default=0.95)
|
|
parser.add_argument("--tau", type=float, default=0.005)
|
|
parser.add_argument("--alpha", type=float, default=0.05)
|
|
parser.add_argument("--auto-alpha", action="store_true", default=False)
|
|
parser.add_argument("--epoch", type=int, default=5)
|
|
parser.add_argument("--step-per-epoch", type=int, default=10000)
|
|
parser.add_argument("--step-per-collect", type=int, default=10)
|
|
parser.add_argument("--update-per-step", type=float, default=0.1)
|
|
parser.add_argument("--batch-size", type=int, default=64)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
|
|
parser.add_argument("--training-num", type=int, default=10)
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument("--n-step", type=int, default=3)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_discrete_sac(args: argparse.Namespace = get_args()) -> None:
|
|
env = gym.make(args.task)
|
|
assert isinstance(env.action_space, gym.spaces.Discrete)
|
|
|
|
space_info = SpaceInfo.from_env(env)
|
|
args.state_shape = space_info.observation_info.obs_shape
|
|
args.action_shape = space_info.action_info.action_shape
|
|
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"CartPole-v1": 170} # lower the goal
|
|
args.reward_threshold = default_reward_threshold.get(
|
|
args.task,
|
|
env.spec.reward_threshold if env.spec else None,
|
|
)
|
|
|
|
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# model
|
|
obs_dim = space_info.observation_info.obs_dim
|
|
action_dim = space_info.action_info.action_dim
|
|
net = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
actor = Actor(net, args.action_shape, softmax_output=False, device=args.device).to(args.device)
|
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
|
net_c1 = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
critic1 = Critic(net_c1, last_size=action_dim, device=args.device).to(args.device)
|
|
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
|
|
net_c2 = Net(obs_dim, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
critic2 = Critic(net_c2, last_size=action_dim, device=args.device).to(args.device)
|
|
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
|
|
|
|
# better not to use auto alpha in CartPole
|
|
if args.auto_alpha:
|
|
target_entropy = 0.98 * np.log(action_dim)
|
|
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
|
|
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
|
|
args.alpha = (target_entropy, log_alpha, alpha_optim)
|
|
|
|
policy: DiscreteSACPolicy[DiscreteSACTrainingStats] = DiscreteSACPolicy(
|
|
actor=actor,
|
|
actor_optim=actor_optim,
|
|
critic=critic1,
|
|
action_space=env.action_space,
|
|
critic_optim=critic1_optim,
|
|
critic2=critic2,
|
|
critic2_optim=critic2_optim,
|
|
tau=args.tau,
|
|
gamma=args.gamma,
|
|
alpha=args.alpha,
|
|
estimation_step=args.n_step,
|
|
)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
)
|
|
test_collector = Collector(policy, test_envs)
|
|
# train_collector.collect(n_step=args.buffer_size)
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, "discrete_sac")
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy: BasePolicy) -> None:
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
# trainer
|
|
result = OffpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
update_per_step=args.update_per_step,
|
|
test_in_train=False,
|
|
).run()
|
|
assert stop_fn(result.best_reward)
|