Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
233 lines
8.3 KiB
Python
233 lines
8.3 KiB
Python
#!/usr/bin/env python3
|
|
# isort: skip_file
|
|
|
|
import argparse
|
|
import datetime
|
|
import os
|
|
import pprint
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
import wandb
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import (
|
|
Collector,
|
|
HERReplayBuffer,
|
|
HERVectorReplayBuffer,
|
|
ReplayBuffer,
|
|
VectorReplayBuffer,
|
|
)
|
|
from tianshou.env import ShmemVectorEnv, TruncatedAsTerminated
|
|
from tianshou.exploration import GaussianNoise
|
|
from tianshou.policy import DDPGPolicy
|
|
from tianshou.trainer import OffpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger, WandbLogger
|
|
from tianshou.utils.net.common import Net, get_dict_state_decorator
|
|
from tianshou.utils.net.continuous import Actor, Critic
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="FetchReach-v3")
|
|
parser.add_argument("--seed", type=int, default=0)
|
|
parser.add_argument("--buffer-size", type=int, default=100000)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[256, 256])
|
|
parser.add_argument("--actor-lr", type=float, default=1e-3)
|
|
parser.add_argument("--critic-lr", type=float, default=3e-3)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
parser.add_argument("--tau", type=float, default=0.005)
|
|
parser.add_argument("--exploration-noise", type=float, default=0.1)
|
|
parser.add_argument("--start-timesteps", type=int, default=25000)
|
|
parser.add_argument("--epoch", type=int, default=10)
|
|
parser.add_argument("--step-per-epoch", type=int, default=5000)
|
|
parser.add_argument("--step-per-collect", type=int, default=1)
|
|
parser.add_argument("--update-per-step", type=int, default=1)
|
|
parser.add_argument("--n-step", type=int, default=1)
|
|
parser.add_argument("--batch-size", type=int, default=512)
|
|
parser.add_argument("--replay-buffer", type=str, default="her", choices=["normal", "her"])
|
|
parser.add_argument("--her-horizon", type=int, default=50)
|
|
parser.add_argument("--her-future-k", type=int, default=8)
|
|
parser.add_argument("--training-num", type=int, default=1)
|
|
parser.add_argument("--test-num", type=int, default=10)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
parser.add_argument("--resume-path", type=str, default=None)
|
|
parser.add_argument("--resume-id", type=str, default=None)
|
|
parser.add_argument(
|
|
"--logger",
|
|
type=str,
|
|
default="tensorboard",
|
|
choices=["tensorboard", "wandb"],
|
|
)
|
|
parser.add_argument("--wandb-project", type=str, default="HER-benchmark")
|
|
parser.add_argument(
|
|
"--watch",
|
|
default=False,
|
|
action="store_true",
|
|
help="watch the play of pre-trained policy only",
|
|
)
|
|
return parser.parse_args()
|
|
|
|
|
|
def make_fetch_env(task, training_num, test_num):
|
|
env = TruncatedAsTerminated(gym.make(task))
|
|
train_envs = ShmemVectorEnv(
|
|
[lambda: TruncatedAsTerminated(gym.make(task)) for _ in range(training_num)],
|
|
)
|
|
test_envs = ShmemVectorEnv(
|
|
[lambda: TruncatedAsTerminated(gym.make(task)) for _ in range(test_num)],
|
|
)
|
|
return env, train_envs, test_envs
|
|
|
|
|
|
def test_ddpg(args=get_args()):
|
|
# log
|
|
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
|
|
args.algo_name = "ddpg"
|
|
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
|
|
log_path = os.path.join(args.logdir, log_name)
|
|
|
|
# logger
|
|
if args.logger == "wandb":
|
|
logger = WandbLogger(
|
|
save_interval=1,
|
|
name=log_name.replace(os.path.sep, "__"),
|
|
run_id=args.resume_id,
|
|
config=args,
|
|
project=args.wandb_project,
|
|
)
|
|
logger.wandb_run.config.setdefaults(vars(args))
|
|
args = argparse.Namespace(**wandb.config)
|
|
writer = SummaryWriter(log_path)
|
|
writer.add_text("args", str(args))
|
|
if args.logger == "tensorboard":
|
|
logger = TensorboardLogger(writer)
|
|
else: # wandb
|
|
logger.load(writer)
|
|
|
|
env, train_envs, test_envs = make_fetch_env(args.task, args.training_num, args.test_num)
|
|
args.state_shape = {
|
|
"observation": env.observation_space["observation"].shape,
|
|
"achieved_goal": env.observation_space["achieved_goal"].shape,
|
|
"desired_goal": env.observation_space["desired_goal"].shape,
|
|
}
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
args.max_action = env.action_space.high[0]
|
|
args.exploration_noise = args.exploration_noise * args.max_action
|
|
print("Observations shape:", args.state_shape)
|
|
print("Actions shape:", args.action_shape)
|
|
print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
# model
|
|
dict_state_dec, flat_state_shape = get_dict_state_decorator(
|
|
state_shape=args.state_shape,
|
|
keys=["observation", "achieved_goal", "desired_goal"],
|
|
)
|
|
net_a = dict_state_dec(Net)(
|
|
flat_state_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
device=args.device,
|
|
)
|
|
actor = dict_state_dec(Actor)(
|
|
net_a,
|
|
args.action_shape,
|
|
max_action=args.max_action,
|
|
device=args.device,
|
|
).to(args.device)
|
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
|
net_c = dict_state_dec(Net)(
|
|
flat_state_shape,
|
|
action_shape=args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
concat=True,
|
|
device=args.device,
|
|
)
|
|
critic = dict_state_dec(Critic)(net_c, device=args.device).to(args.device)
|
|
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
|
|
policy = DDPGPolicy(
|
|
actor=actor,
|
|
actor_optim=actor_optim,
|
|
critic=critic,
|
|
critic_optim=critic_optim,
|
|
tau=args.tau,
|
|
gamma=args.gamma,
|
|
exploration_noise=GaussianNoise(sigma=args.exploration_noise),
|
|
estimation_step=args.n_step,
|
|
action_space=env.action_space,
|
|
)
|
|
|
|
# load a previous policy
|
|
if args.resume_path:
|
|
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
|
|
print("Loaded agent from: ", args.resume_path)
|
|
|
|
# collector
|
|
def compute_reward_fn(ag: np.ndarray, g: np.ndarray):
|
|
return env.compute_reward(ag, g, {})
|
|
|
|
if args.replay_buffer == "normal":
|
|
if args.training_num > 1:
|
|
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
|
|
else:
|
|
buffer = ReplayBuffer(args.buffer_size)
|
|
else:
|
|
if args.training_num > 1:
|
|
buffer = HERVectorReplayBuffer(
|
|
args.buffer_size,
|
|
len(train_envs),
|
|
compute_reward_fn=compute_reward_fn,
|
|
horizon=args.her_horizon,
|
|
future_k=args.her_future_k,
|
|
)
|
|
else:
|
|
buffer = HERReplayBuffer(
|
|
args.buffer_size,
|
|
compute_reward_fn=compute_reward_fn,
|
|
horizon=args.her_horizon,
|
|
future_k=args.her_future_k,
|
|
)
|
|
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
|
|
test_collector = Collector(policy, test_envs)
|
|
train_collector.collect(n_step=args.start_timesteps, random=True)
|
|
|
|
def save_best_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
if not args.watch:
|
|
# trainer
|
|
result = OffpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
update_per_step=args.update_per_step,
|
|
test_in_train=False,
|
|
).run()
|
|
pprint.pprint(result)
|
|
|
|
# Let's watch its performance!
|
|
policy.eval()
|
|
test_envs.seed(args.seed)
|
|
test_collector.reset()
|
|
result = test_collector.collect(n_episode=args.test_num, render=args.render)
|
|
print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_ddpg()
|