Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
217 lines
7.2 KiB
Python
217 lines
7.2 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
import datetime
|
|
import os
|
|
import pickle
|
|
import pprint
|
|
import sys
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from examples.atari.atari_network import DQN
|
|
from examples.atari.atari_wrapper import make_atari_env
|
|
from examples.offline.utils import load_buffer
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.policy import DiscreteBCQPolicy
|
|
from tianshou.trainer import OfflineTrainer
|
|
from tianshou.utils import TensorboardLogger, WandbLogger
|
|
from tianshou.utils.net.common import ActorCritic
|
|
from tianshou.utils.net.discrete import Actor
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="PongNoFrameskip-v4")
|
|
parser.add_argument("--seed", type=int, default=1626)
|
|
parser.add_argument("--eps-test", type=float, default=0.001)
|
|
parser.add_argument("--lr", type=float, default=6.25e-5)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
parser.add_argument("--n-step", type=int, default=1)
|
|
parser.add_argument("--target-update-freq", type=int, default=8000)
|
|
parser.add_argument("--unlikely-action-threshold", type=float, default=0.3)
|
|
parser.add_argument("--imitation-logits-penalty", type=float, default=0.01)
|
|
parser.add_argument("--epoch", type=int, default=100)
|
|
parser.add_argument("--update-per-epoch", type=int, default=10000)
|
|
parser.add_argument("--batch-size", type=int, default=32)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[512])
|
|
parser.add_argument("--test-num", type=int, default=10)
|
|
parser.add_argument("--frames-stack", type=int, default=4)
|
|
parser.add_argument("--scale-obs", type=int, default=0)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument("--resume-path", type=str, default=None)
|
|
parser.add_argument("--resume-id", type=str, default=None)
|
|
parser.add_argument(
|
|
"--logger",
|
|
type=str,
|
|
default="tensorboard",
|
|
choices=["tensorboard", "wandb"],
|
|
)
|
|
parser.add_argument("--wandb-project", type=str, default="offline_atari.benchmark")
|
|
parser.add_argument(
|
|
"--watch",
|
|
default=False,
|
|
action="store_true",
|
|
help="watch the play of pre-trained policy only",
|
|
)
|
|
parser.add_argument("--log-interval", type=int, default=100)
|
|
parser.add_argument(
|
|
"--load-buffer-name",
|
|
type=str,
|
|
default="./expert_DQN_PongNoFrameskip-v4.hdf5",
|
|
)
|
|
parser.add_argument("--buffer-from-rl-unplugged", action="store_true", default=False)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_discrete_bcq(args=get_args()):
|
|
# envs
|
|
env, _, test_envs = make_atari_env(
|
|
args.task,
|
|
args.seed,
|
|
1,
|
|
args.test_num,
|
|
scale=args.scale_obs,
|
|
frame_stack=args.frames_stack,
|
|
)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
# should be N_FRAMES x H x W
|
|
print("Observations shape:", args.state_shape)
|
|
print("Actions shape:", args.action_shape)
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
# model
|
|
feature_net = DQN(
|
|
*args.state_shape,
|
|
args.action_shape,
|
|
device=args.device,
|
|
features_only=True,
|
|
).to(args.device)
|
|
policy_net = Actor(
|
|
feature_net,
|
|
args.action_shape,
|
|
device=args.device,
|
|
hidden_sizes=args.hidden_sizes,
|
|
softmax_output=False,
|
|
).to(args.device)
|
|
imitation_net = Actor(
|
|
feature_net,
|
|
args.action_shape,
|
|
device=args.device,
|
|
hidden_sizes=args.hidden_sizes,
|
|
softmax_output=False,
|
|
).to(args.device)
|
|
actor_critic = ActorCritic(policy_net, imitation_net)
|
|
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
|
|
# define policy
|
|
policy = DiscreteBCQPolicy(
|
|
model=policy_net,
|
|
imitator=imitation_net,
|
|
optim=optim,
|
|
action_space=env.action_space,
|
|
discount_factor=args.gamma,
|
|
estimation_step=args.n_step,
|
|
target_update_freq=args.target_update_freq,
|
|
eval_eps=args.eps_test,
|
|
unlikely_action_threshold=args.unlikely_action_threshold,
|
|
imitation_logits_penalty=args.imitation_logits_penalty,
|
|
)
|
|
# load a previous policy
|
|
if args.resume_path:
|
|
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
|
|
print("Loaded agent from: ", args.resume_path)
|
|
# buffer
|
|
if args.buffer_from_rl_unplugged:
|
|
buffer = load_buffer(args.load_buffer_name)
|
|
else:
|
|
assert os.path.exists(
|
|
args.load_buffer_name,
|
|
), "Please run atari_dqn.py first to get expert's data buffer."
|
|
if args.load_buffer_name.endswith(".pkl"):
|
|
with open(args.load_buffer_name, "rb") as f:
|
|
buffer = pickle.load(f)
|
|
elif args.load_buffer_name.endswith(".hdf5"):
|
|
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
|
|
else:
|
|
print(f"Unknown buffer format: {args.load_buffer_name}")
|
|
sys.exit(0)
|
|
print("Replay buffer size:", len(buffer), flush=True)
|
|
|
|
# collector
|
|
test_collector = Collector(policy, test_envs, exploration_noise=True)
|
|
|
|
# log
|
|
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
|
|
args.algo_name = "bcq"
|
|
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
|
|
log_path = os.path.join(args.logdir, log_name)
|
|
|
|
# logger
|
|
if args.logger == "wandb":
|
|
logger = WandbLogger(
|
|
save_interval=1,
|
|
name=log_name.replace(os.path.sep, "__"),
|
|
run_id=args.resume_id,
|
|
config=args,
|
|
project=args.wandb_project,
|
|
)
|
|
writer = SummaryWriter(log_path)
|
|
writer.add_text("args", str(args))
|
|
if args.logger == "tensorboard":
|
|
logger = TensorboardLogger(writer)
|
|
else: # wandb
|
|
logger.load(writer)
|
|
|
|
def save_best_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards):
|
|
return False
|
|
|
|
# watch agent's performance
|
|
def watch():
|
|
print("Setup test envs ...")
|
|
policy.eval()
|
|
policy.set_eps(args.eps_test)
|
|
test_envs.seed(args.seed)
|
|
print("Testing agent ...")
|
|
test_collector.reset()
|
|
result = test_collector.collect(n_episode=args.test_num, render=args.render)
|
|
pprint.pprint(result)
|
|
rew = result["rews"].mean()
|
|
print(f'Mean reward (over {result["n/ep"]} episodes): {rew}')
|
|
|
|
if args.watch:
|
|
watch()
|
|
sys.exit(0)
|
|
|
|
result = OfflineTrainer(
|
|
policy=policy,
|
|
buffer=buffer,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.update_per_epoch,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
|
|
pprint.pprint(result)
|
|
watch()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_discrete_bcq(get_args())
|